
Compose music
with Sonic Pi

Electronics
Get started with wiring

and circuit design

Cool Rasp Pi
Projects!

Learn to Program!
Take your first steps with:

S Turtle Art
S Scratch

S Python

FREE
DVD

Discover the
Rasp Pi camera

Easy lessons in computing for a new
generation of hackers and makers

Make your Pi into a web server!

GREAT
GIFT
IDEA!

Special

W W W . L I N U X - M A G A Z I N E . C O M

9
771757

636002

2
7

£7.99
Issue #27

Linux M
agazine Special

ABo Jlowi

This single issue is your guide to the Raspberry Pi experience!

Attention
Adventurers

If you’ve always wanted to experience the Raspberry Pi, but you don’t
want to wade through pages of complicated documentation, you’ve picked up
the right magazine! Raspberry Pi Adventures offers an insightful collection of
fun, informative, and easy projects for Raspberry Pi users of all ages.

The articles in this issue are written for curious beginners who want to learn
about computers and are ready to explore the wonders of the Raspberry Pi. You’ll
travel deep into the Raspberry Pi experience, exploring the amazing $35 computer
in all its most popular roles. Learn about web servers by building your own home
website. Use the Raspberry Pi camera to create a time-lapse video recording. Get
started with computer programming, first with easy tools like Turtle
Art and Scratch, and then with your first steps in the powerful
Python language, a favorite of programmers around the world.

Many Pi experts believe the real fun is creating electronics
projects that light up lights, start motors, and ring bells.
We’ll give you a thorough introduction to Raspberry Pi elec-
tronics and help you get started using a cobbler, breadboard,
and other electronics tools. You’ll also learn to create anima-
tions in Scratch, and you’ll get the chance to make some music
with the amazing Sonic Pi, a music tool created specially for
Raspberry Pi environments.

Adventurers get ready! Let the journey begin…

3

Welcome

INTRODUCTION

Service
 3	 �Welcome
 8	� DVD
98	� Masthead

10	� Get Started

Before you start your first
adventure, you'll need to set up
your Raspberry Pi and install the
operating system.

18	� Discover Raspbian
Customize your system, work with
the terminal, and install new
applications on your Raspberry Pi.

RASPBERRY PI ADVENTURES

4 Raspberry Pi Adventures

Projects

5

70Electronics: Build your
Pi into cool projects that

interact with the world.

 90 Sonic Pi: Compose
music and use your Pi as

a musical instrument.

26Web Server: Set up your Pi
as a mini web server for

the home.

Highlights

26	� Web Server
Install a web server on your
Raspberry Pi and build a
simple website.

34	� Pi Camera
Control a camera with your
Raspberry Pi.

42	� Turtle Art
Take your first programming
steps with turtle graphics.

52	� Scratch
Scratch makes programming
fun and easy. We'll show you
how to to Draw, animate, and
create a shark attack game.

58	� Python Programming
Now that you’ve tried
Turtle Art and Scratch,
we’ll show you how to
work with the powerful
Python programming
language.

70	� Electronics
Build a scoreboard
while you explore
the breadboard and
discover other tools for
integrating your Pi with
electrical circuits.

86	� Scratch Animation
Use Scratch’s built-in graphics editor
to create animations for a racing
game.

90	� SonicPi
Make music and explore the world of
digital sound with Sonic Pi.

Extras

52Scratch: Learn the basics
of programming with this

easy graphical language.

See p8 for
full details!

5

The DVD attached to this issue includes
the latest release of

the Raspbian Linux, the “official operat-
ing system” of the Raspberry Pi Founda-
tion. The brand new Raspbian Jessie re-
lease is based Debian Linux 8 “Jessie”
and comes with many new applications
and updates.

The system now boots directly to the
desktop and includes the convenient
GUI-based Raspberry Pi Configuration
Tool for managing configuration set-
tings. Rolled into the new release are
convenient desktop tools, such as Libre-
Office and Claws mail. Jessie also comes
with additional programming tools,
GTK+3 support, and new options for
customizing the user environment.

On the DVD

[1]	� Raspbian: https://​www.​raspbian.​org/

[2]	� Raspbian Documentation:
https://​www.​raspbian.​org/​RaspbianDocumentation

[3]	� “Jessie is Here”:
https://​www.​raspberrypi.​org/​blog/​raspbian‑jessie‑is‑here/

[4]	� Raspberry Pi Forums:
https://​www.​raspberrypi.​org/​forums/

Resources

8 Raspberry Pi Adventures

On the DVD

https://www.raspbian.org/
https://www.raspbian.org/RaspbianDocumentation
https://www.raspberrypi.org/blog/raspbian-jessie-is-here/
https://www.raspberrypi.org/forums/

Before you start your first
adventure, you’ll need to

set up your Raspberry Pi and
install the operating

system.
 By Paul C. Brown, Joseph
Guarino, and Joe Casad

The first task you’ll face with your
new Raspberry Pi is to

get the system up and running. You’ll
need to find the necessary parts, plug
in all the cables, and obtain or prepare
an SD card with a suitable Raspberry Pi
operating system. This article describes
how to get your system up and running.
If you already have a working Rasp-
berry Pi system, you might want to skip
this article and move on to the adven-
tures ahead.

Which Pi?
The Raspberry Pi comes in several
models (see Table 1; the Raspberry Pi
Compute Module, which is intended for
embedded systems prototyping, is not
shown in the table). Most boards are

based on the Model B, with two or more
USB ports, Ethernet, and a camera inter-
face. In the fall of 2012, the Raspberry Pi
Foundation revised the design of the
Raspberry Pi 1; these boards were called
Rev 2 systems. They have a slightly dif-
ferent layout, including some differences
in the configuration of the GPIO pins.

The version 1 Model A and A+
(RPi1A/​A+) are designed for low-re-
source, low-cost scenarios and are
lighter on memory – but lighter on
power usage, as well. The Model B+
(RPiB+), introduced in July 2014, be-
came popular for its two extra USB ports
and 14 extra GPIO pins, but it was
shortly trumped in February 2015 when
the Raspberry Pi 2 (RPi2) arrived with a
900MHz quad-core processor and 1GB
of RAM. One year later, the Raspberry

Getting Started
Assembling and Starting
Your Raspberry Pi

RPi1A RPi1A+ RPi1B Rev 2 RPiB+ RPi2 RPi3 RPi Zero

Target Price $25 $20 $35 $35 $35 $35 $5

CPU 700MHz
ARMv6

700MHz
ARMv6

700MHz
ARMv6

700MHz
ARMv6

900MHz quad-
core ARMv7

1.2GHz quad-core
ARMv8, 64-bit

1GHz
ARMv6

Memory (SDRAM;
Shared with GPU)

256MB 256MB 512MB 512MB 1GB 1GB 512MB

USB Ports 1 1 2 4 4 4 1 micro-USB

SD Storage SD MMC MicroSDHC SD MMC MicroSDHC MicroSDHC MicroSDHC MicroSDHC

Power Rating 300mA
(1.5W)

200mA
(1W)

700mA
(3.5W)

600mA
(3.0W)

800mA
(4.0W)

800mA
(4.0W)

~160mA
(0.8W)

TABLE 1: Raspberry Pi Consumer Models
Le

ad
 Im

ag
e

©
A

le
xa

nd
r

A
le

ab
ie

v,
 1

23
R

F.
co

m

10 Raspberry Pi Adventures

First Steps

Pi 3 (RPi3) offered not only increased
speed, with a 1.2GHz 64-bit quad-core
ARMv8 processor, but integrated WiFi
and Bluetooth to boot.

The very small Raspberry Pi Zero
(~2.5x1.25 inches), revealed in Novem-
ber 2015, diverts from the usual RPi
form factor, offering a limited number of
ports, pre-RPi2 RAM, no camera or LCD
display connectors, and no Ethernet.
However, it maintains the 40-pin GPIO
and costs just $5. The RPi Zero uses a
micro-USB (OTG) port, which supports
communication to such things as mice,
keyboards, speakers, and video devices
through a powered USB hub. Pi Zero
users also need to buy a supported WiFi
dongle for network connectivity.

Buy Some Pi
You can buy the Raspberry Pi from a
number of resellers. The Raspberry Pi
website links to a page that lets you
browse official vendors around the
world [1]. Keep in mind that when you
buy a Pi, a few more purchases are re-
quired in addition to the unit itself.
See the box titled “Parts List” for a
shopping list.

Getting Raspbian
You might have acquired a Raspberry Pi
in kit form, with a protective case for the
Pi, some cables, and an SD card pre-
loaded with Raspbian. If you already
have an SD card and you’re impatient to
get your Pi up and running, you might
want to skip this section for the time
being and go directly to First Boot.

This article describes how to install
the Raspbian operating system on your
Raspberry Pi. Raspbian is officially
sponsored by the Raspberry Pi Founda-
tion, and you can download it from
their site [3]. Raspbian is free software,
so you can download it for no charge,
and once you get it, you are free to
copy and distribute it. The DVD at-
tached to this issue also includes Rasp-
bian. The version of Raspbian on the
DVD is Raspbian Jessie. If already have
a Raspbian system running on your
Raspberry Pi, you might be running
Raspbian Wheezy, which came before
the Jessie edition.

Regardless of whether you get the
Raspbian image file from a website or

from the DVD, the steps for setting
up your SD card are similar.

If you download an OS file from
the Internet, you might want to start
with an integrity check to be sure the
file arrived in its original state. See the
box titled “Integrity Check.”

Getting an SD Card
The Raspberry Pi uses an SD card as a
storage medium. Several Raspberry Pi
vendors will send you an SD card with
Raspbian already installed. If you already
have Raspbian on an SD card, you can
skip this section. As you’ll see when you
read this section, the task of burning an
image on an SD card requires several
steps and can be confusing. If you’re new

Getting Started
The tiny Raspberry Pi computer-on-a-board won’t do much for you all
alone. Be sure you have the following on hand before you start:

• �1 Raspberry Pi

• �1 Power supply

• �1 MMC SD or microSD card – depending on the model of your Rasp Pi.

• �1 USB mouse (optional if you will use the command line only)

• �1 USB keyboard

• �1 DVI- or VGA-to-HDMI converter (if needed) to connect your monitor
via HDMI.

• �1 case (optional).

• �1 SD card writer. (Many contemporary computers already have an SD
card writer, but if you don’t, buy a card writer or buy an SD card with
Raspbian already on it.)

Notes and caveats on the purchase list:

• �Power supply – The Pi model B needs a 5V micro USB power supply,
but not just any USB cable will do. As with most things, the devil is in
the details. If you were to connect your Pi to any average micro USB
cable, it would not work. Specifically, model B needs the higher current
USB power of 700mA, which is often found in many conventional phone
chargers. This is important for system stability.

Failing to pay attention to the details of these power requirements will
leave you with lockups and other system problems. See the Raspberry Pi
compatible device list [2] for more information.

• �Powered USB hub – Old Rasp Pi systems only had two USB ports, which
meant no room for additional devices once you connected your keyboard
and mouse. RPi2/3 and B+ models have four USB ports, which allow for
easier expansion without an external USB hub; however, some users pre-
fer a powered USB hub anyway to help minimize the risk of drawing too
much power and causing stability issues.

Parts List

11

size that is approximately equal to the
size of your SD card, and try to verify
that this is the correct device. (Be sure
you don’t choose a hard disk!)

Enter the following command to for-
mat the card as FAT32:

mkdosfs ‑F 32 ‑v <device_name>

For instance, if the SD card device has
the name mmcblk0, enter:

mkdosfs ‑F 32 ‑v mmcblk0

To create a working SD card with Rasp-
bian, you have to do a byte-by-byte
copy from the file to the card. Byte-by-
byte copies are risky if you are not sure
what you’re doing because you com-
pletely erase the data on the destination
drive. If you get confused and choose
the wrong destination (e.g., you choose
a partition on your hard disk instead of
your SD card), you could lose your
data. That said, making byte-by-byte
copies is not difficult, and you just have
to pay attention at the key moments of
the process.

If you are using Windows, you can use
a program called Win32 Disk Imager [6].
Download the program and install it.
Plug your SD card into your computer (if
you don’t have an SD card reader slot,
you can purchase a cheap external
adapter that will plug into a USB port)
and note where Windows mounts the
card (see Table 1 for the correct SD card
type to use with your Rasp Pi model). If
you look at Figure 1, you can see that, in
our lab, Windows assigned the card to
the H: drive.

Now you can use the Win32 Disk Im-
ager program to do a byte-by-byte copy
from the Raspbian file to the card. In the
Image File text box, navigate to the
image file, for example, look for
2015‑09‑24‑raspbian‑jessie.img,
and in the Device drop-down box,
choose the letter assigned to your card
(in the case shown in Figure 1, you
would choose H:) and start copying.
Please note that all data on the destina-
tion drive will be lost, so use an empty
card or one that contains data you don’t
mind deleting.

Both Linux and Mac OS X can use
their terminal windows and the dd tool
to do the copy. You’ll need the name as-
signed to the SD card. See the previous

too this kind of thing and want to keep it
simple, you might want to consider ob-
taining a preinstalled Raspbian SD.

The unzipped Raspbian image file is
not a standard file but contains the
Raspbian OS already installed and half
configured. This type of file is called an
image file because it represents a disk
image. You can’t just copy the file over
to the SD card.

Some SD cards come preformatted. If
your card is not formatted yet, you’ll
need to format it with the FAT32 filesys-
tem. Windows and Mac OS systems
have built-in tools for formatting parti-
tions. The SD Association recommends
that Windows and Mac OS users use
their free formatting tool, which is de-
signed specifically for SD cards. You can
find the SD formatter at the SD Associa-
tion website [5].

Linux users have several options for
how to format an SD card. Running the
following command with superuser
privileges:

lsblk

will list block devices mounted on the
system. (This procedure assumes your
Linux system is configured to auto-
mount disks.) The SD card will appear
in the list as type “Disk.” Partitions on
the disk will appear below the device in
a tree structure. Look for a disk with a

FIGURE 1: In this case, Windows has assigned the SD Card to drive H:.

12 Raspberry Pi Adventures

First Steps

discussion on finding the name. Another
Linux command you can use to find the
disk name is dmesg. To find the SD card
using dmesg, plug the card into the com-
puter and immediately run the dmesg
command from a terminal window:

$ dmesg
...
[...] mmc0: new high speed SDHC card U
 at address 59b4
[...] mmcblk0: mmc:59b4 7.4GiB
[...] mmcblk0: p1 p2 < p5 p6 > p3
...

The last lines will show you where the
operating system found your card. Here,
the card appears at /dev/mmcblk0.

Be sure you have the right drive! The
formatting process destroys all data on
the drive. To use dd, the card must be
unmounted, that is, not assigned to a di-
rectory in the filesystem. You can run

sudo umount /dev/mmcblk0

to unmount it. If the card was not
mounted to start with, umount will just
display an error and exit.

Now navigate to the directory where
you downloaded Raspbian with:

cd /Raspbian/download/directory

where /Raspbian/download/direc‑
tory is the path to your Raspbian image
on Linux. Then, you can carry out the
byte-by-byte copy to the card with:

$ sudo dd bs=1m U
 if=2015‑02‑16‑raspbian‑wheezy.img U
 of=/dev/sdb

On the Mac, first make sure the SD
card has been formatted in FAT32 and
run the following command:

diskutil list

Look for the device formatted FAT32
(Figure 2) and note its device name
(here, disk1). Unmount the disk:

diskutil unmountDisk /dev/disk1

Next, navigate to the directory where
you downloaded Raspbian with:

cd ~/Downloads

Then, you can carry out the byte-by-byte
copy to the card with:

$ sudo dd bs=1m U
 if=2015‑02‑16‑raspbian‑wheezy.img U
 of=/dev/rdisk1

(Note the use of rdisk1 rather than
disk1.) This copy will take a while, and
dd will not show any sort of progress
bar.

Assembling Your Pi
Once you have loaded the operating sys-
tem onto your SD card, assemble your Pi
into the case of your choice. Cases are
optional, but they do help you keep your

FIGURE 2: The SD card (/​dev/​disk1) was formatted FAT32 and named RASPI
with the Mac SD Formatter tool.

The creators of a file often provide an
SHA-1 hash, which is the long string of
letters and numbers you see under the
link on the download page. Running a
program on your downloaded file will
produce a similar string. If both the
string on the site and the string you pro-
duce locally are the same, the file is okay.
On Windows, you can download a pro-
gram [4] to use on the command line for
checking file integrity. Linux and Mac
OS X have preinstalled tools for integrity
checks. On Linux, simply type the fol-
lowing in a terminal window:

sha1sum 2015‑02‑16‑raspbian‑wheezy.zip

On Mac OS X, open a terminal and type:

openssl sha1 2015‑02‑16‑raspbian‑wheezy.zip

Once you’re happy that the file you have
downloaded is okay, you can unzip it
and install it on an SD card.

Integrity Check

13

To open the Raspberry Pi Configuration
Tool, click on the Menu button in the up-
per-left corner of the Raspbian desktop
and choose Preferences | Raspberry Pi
Configuration Tool. The tool opens to the
System tab (Figure 3), which lets you
manage the following options:
•	Expand Filesystem – in some cases,

Raspbian is only able to use part of the
space on the SD card. This option ex-
pands into all the available space. Your
configuration might already be using all
the space, in which case a message will
tell you this option isn’t necessary.

•	Change Password – the default pass-
word for the default account is rasp‑
berry, which isn’t much of a pass-
word and, even if it were, everyone
knows it. If you are concerned about
the security of your system, change
the default password. Be sure you
write down your password or have a
clear means for remembering it.

•	Boot to desktop or CLI – The articles
in this issue assume you are using a
graphic desktop system. If you are an
experienced user and would prefer to
boot to the command line (CLI means
“Command Line Interface”), select the
CLI option. A checkbox below lets you
choose whether you want the system
to prompt the user for login creden-
tials at startup or log in automatically.

See the Wheezy discussion in the next
section for more on the Overscan (Under-
scan) option.

The Interfaces tab (Figure 4) lets you
choose whether to enable the camera
and SSH, which you will learn about in
later articles. The Performance tab lets
you choose whether to overclock the
Raspberry Pi system. Overclocking in-
creases the speed but can pose issues for
stability, cooling, and durability of your

Pi safe from accidental damage or elec-
trostatic discharge.

Next, insert the SD card into the bot-
tom of the Rasp Pi. You can only insert
the card one way for it to function.
Connect your monitor to the Raspberry
Pi via the HDMI port. If you have an
older monitor that has only VGA or
DVI, you will need a cable that converts
to HDMI.

If you’re running a first-generation Pi
system, you might want to attach a pow-
ered USB hub to increase the available
USB ports. Even if you are using a B+ or
Pi2B board (with four available ports),
you might prefer to use a powered USB
hub to avoid potential instability associ-
ated with drawing too much power.
Next, plug in an Ethernet cable for your
local LAN and, finally, plug in your
power supply.

First Boot: Jessie
Earlier versions of Raspbian launched a
complicated configuration dialog at first
boot, allowing the user to configure the
locale, camera, login, and other set-
tings. (See the next section on booting
Debian Wheezy.) With the latest Jessie
release, the Raspbian developers have
simplified the first login by eliminating
the choices and booting the system to a
default configuration.

Just slip the SD card into the slot and
turn on the power. The system will boot
directly to the Raspbian desktop. You
can then make the necessary configura-
tion changes through the available con-
figuration tools. In particular, the Rasp-
berry Pi Configuration Tool was devel-
oped to encapsulate many of the settings
a user might want to address when start-
ing a new system.

FIGURE 3: The Raspberry Pi Configuration
Tool System tab lets you configure

login settings and define system parameters.
FIGURE 4: The Configuration Tool’s

Interfaces tab lets you enable
or disable the Raspi Pi camera and SSH.

14 Raspberry Pi Adventures

First Steps

system. You won’t need overclocking for
the exercises in this issue. Another op-
tion in the Performance tab lets you set
the amount of memory assigned to the
Graphics User Interface (GPU). You
probably won’t need to change this set-
ting either, but if you’re using your
Raspberry Pi for graphic-intensive appli-
cations, such as gaming or video play-
back, you might want to experiment
with increasing the GPU memory.

The Localisation tab includes settings
that vary based on your location, such
as the language, timezone, and keyboard
layout.

The next article in this issue discusses
some other options for customizing your
user environment, such as adding new
applications and changing the appear-
ance of your desktop.

First Boot: Wheezy
If you created or obtained your Raspbian
SD card sometime before you bought
this issue, the chances are your SD con-
tains the Raspbian Wheezy edition,
which is based on Debian Linux 7
“Wheezy.” The first time you boot up
Raspbian Wheezy on your Pi, you’ll see
a bunch of text scroll by before you
reach the raspi‑config tool (Figure 5).

 From the configuration tool, you can set
up the initial default configuration of your
Pi. This might sound like a major decision-
making moment, but don’t worry: You can
run the tool at any time from a command
line with sudo raspi‑config if you are
not happy with the settings.

To navigate the menu, use the up and
down arrow keys on your keyboard to
highlight options, then use the Tab key
to skip to the Select button to continue
to the next screen. All the screens lead-
ing off the main menu screen work in
the same way.

The first option, Expand Filesystem,
lets you decide whether you want to ex-
pand the root filesystem so that it takes
up all the space on the SD card. For now,
go ahead and choose this option. The
Raspbian image takes up just less than
2GB. Most SD cards are 8GB or more
nowadays. If you don’t expand the root
filesystem, you’ll have 6GB or more that
you won’t be able to use.

The Change User Password option al-
lows you to change the administrator us-
er’s default password. The administrator

(known as superuser or root in Linux
parlance) has complete control over the
computer, and anyone who has access
to superuser privileges can cause serious
damage. Therefore, if your Raspberry Pi
is going to be used by more than one
user or is going to be open to a local net-
work or the Internet (e.g., as a server),
changing the default password is a good
idea. The default administrator’s user-
name, by the way, is pi and the default
password is raspberry.

The third option, Enable Boot to Desk-
top/​Scratch, lets you boot into the graph-
ical desktop, boot directly into the
Scratch programming environment, or
continue to boot to the command
prompt. This special issue assumes you
are running your system using the desk-
top option, but if you feel like experi-
menting with running your Pi from a
command-line interface, you can always
start the desktop later if you need it.
(See the box titled “Starting and Stop-
ping from the Command Line.”)

Internationalisation Options allow you
to change localization settings. The first
option in this category, Change Locale,
sets the language, country, character set,
sort order, and so on. When you arrow
or page down into the correct box, press
the Spacebar to choose.

You can mark more than one locale. If
you want to deselect the UK (en-GB)
English default, find its box marked with
an asterisk and press the spacebar to de-
select. On the next screen, set the de-
fault language from among the choices,
then Tab to Ok.

Change Timezone lets you choose the
time zone you want to use with your Pi.
If your Raspberry Pi is connected to the

FIGURE 5: The Raspbian configuration tool lets you manage configuration set-
tings for your Pi.

If you elect to operate your
Raspberry Pi from the com-
mand line, you can always
start the graphical desktop
after you boot by typing

startx

at the command line.
To power down your Pi
from the command line,
type

sudo halt

and hit Enter. If you want to
restart your Pi, type:

sudo reboot

If you just want to log out,
type:

exit

Starting and Stopping
from the Command Line

15

you define your keyboard’s modifier
key and Compose key (Multi-key) and
whether you want to use Ctrl+​Alt+​
Backspace to terminate the X server
(graphical environment).

The Enable Camera option allows you
to enable or disable the Raspberry Pi
camera add-on [7].

You’ve probably heard of overclocking
before. Most computers ship with the
CPU set to a certain speed, but the mi-
croprocessor is capable of running much
faster. Overclocking is the technique by
which you make a microprocessor run at
a higher speed than was originally con-
figured. However, overclocking has its
risks. It can lead to instabilities within
the system, and higher speeds usually
mean that the electronics heat up be-
yond their design specs, which means
that overclocking can lead to compo-
nents burning out. Overclocking can
also shorten the processor’s life, so your
Raspberry Pi won’t last as long. My ad-
vice is to leave the Overclock option
alone until you are sure you need the
extra speed and understand all the risks.

Advanced Options includes Overscan,
which allows you to establish a black bor-
der around the screen. This option was
useful when monitors and TVs had a
physical plastic or wooden border that
overlapped the viewing area. Overscan
made the viewing area smaller, thus
avoiding information being cut off by the
physical border. Most modern monitors
don’t have this problem or have their own
configuration menus to shrink or move
the viewing area. The default is Disable,
which you should probably leave as is.

The Raspberry Pi has two processors
onboard. One is the CPU, which does all
the general calculations and executes
most of the commands, and the other is
the graphics processor, or GPU, which is
used to render graphics in games, play
videos, and so forth. In bigger machines,
each processor has its own, separate
memory, but not so with the Pi: On the
Model A and Model B Rev 1, you have
256MB of RAM; on the Model B Rev 2,
you have 512MB. That RAM has to be
shared between the CPU and the GPU.
The advanced Memory Split option
therefore allows you to decide which
processor gets what.

For everyday use, the defaults should
be okay. But, if you are going to run
GPU-intensive programs, such as 3D

Internet, Raspbian will automatically try
to contact an NNTP server to get the cor-
rect GMT time and then add or subtract
the number of hours to calculate your
local time.

The final localization option, Change
Keyboard Layout, allows you to establish
the model, layout, and language of the
keyboard you are using. (If the console
kicks out errors and shows that en-GB.
UTF-8 is still the preferred language,
refer to the “Bug Box” sidebar.) If you
don’t see your keyboard in the first
screen, arrow down to Other and Tab to
Ok. After a few seconds, you will see a
long list of keyboard models. Generic
105-key (Intl) PC is the default option

and is the most com-
mon keyboard lay-
out. Once you have
chosen your key-
board layout, use
the Tab key to high-
light Ok and hit
Enter.

In the following
screen, you can
choose your key-
board’s language,
and, in the next
screen, the variant
of your language
(Figure 6). If you
select English (US),
for example, you
will then be able to
choose from among
a wide range of
variants and key-
board models. The
next screens let

FIGURE 6: You can easily configure the layout and language of your keyboard
under Internationalisation Options | Change Keyboard Layout.

Sometimes, the configuration utility does not
change from en-GB.UTF-8 to your keyboard lan-
guage of choice (e.g., en-US.UTF-8) and throws
error messages. If this happens to you, choose
Cancel to get out of the keyboard configuration
window, then Tab to Finish, and say No to a reboot.
You need to edit the .bashrc file. To do so, enter:

sudo nano /home/pi/.bashrc

Arrow down to a blank line and enter:

export LC_ALL=C

Now press Ctrl+X; hit y[es] to save and Enter to
save to the same file name. Next, enter

sudo raspi‑config

to return to the configuration program. You
should now be able to change your keyboard set-
tings under Internationalisation Options.

Bug Box

16 Raspberry Pi Adventures

First Steps

games or a Kodi media center applica-
tion, you might want to give the graph-
ics processor a bit more RAM.

SSH (short for Secure SHell) is a pro-
tocol that allows you to log in to a
computer from a remote location over
a secure and encrypted “SSH tunnel.”
If you enable SSH on your Pi, you can
administer your Pi from another com-
puter. See the “Networking” box for
more details.

Another advanced option is Update.
This option looks online for updates for
the raspi‑config program and, if they
exist, downloads and installs them.

When you’re done configuring, use
the Tab key to highlight the Finish but-
ton and hit Enter to exit the tool. Rasp-
bian will ask whether you want to re-
boot. Answering Yes reboots immedi-
ately. Answering No applies your
changes on the next bootup.

Next time you boot into Raspbian, you
will see the text login screen or GUI, de-
pending on the choices you just made in
the configuration program. Either way, if
there is something you would like to
change, you can run the Raspbian con-
figuration tool with

sudo raspi‑config

at any time from the command line or
from a terminal window on the desktop.

Conclusion
Raspbian is designed for easy configura-
tion and installation. Once you get the sys-
tem on your SD card, the rest is easy, and if
you purchased an SD card with Raspbian
preinstalled, the task is even easier. Rasp-
bian Jessie lets you change the configura-
tion later using the applets in the Prefer-
ences window. Jessie also supports the
raspi‑config utility described in the sec-
tion on Raspbian Wheezy. For either
Wheezy or Jessie, you can start up
raspi‑config at any time by entering
sudo raspi‑config at the command line.

Now that your system is up and run-
ning, get ready for your first adventure! X

Info
[1]	� RS vendors by country:

https://​www.​raspberrypi.​org/​help/​
faqs/​#buyingWhere

[2]	� RPi VerifiedPeripherals: http://​elinux.​
org/​RPi_VerifiedPeripherals

[3]	� Download Raspbian from the Rasp-
berry Pi’s official site: http://​www.​
raspberrypi.​org/​downloads

[4]	� SHA1Sum tool for Windows: http://​
www.​softpedia.​com/​progDownload/​
SHA1Sum‑​Download‑143137.​html

[5]	� SD Formatter for Windows and Mac
OS: https://​www.​sdcard.​org/​
downloads/​formatter_4/

[6]	� Win32 Disk Imager:
http://​sourceforge.​net/​
projects/​
win32diskimager/

[7]	� The Raspberry Pi camera:
https://​www.​raspberrypi.​
org/​products/​
camera-module-v2/

[8]	� Network configuration in
the Debian wiki:
http://​wiki.​debian.​org/​
NetworkConfiguration

In the default configuration, Raspberry Pi will join the
LAN by requesting an IP address from a DHCP server. (In
most home environments, the local router/​firewall device
acts as a DHCP server, assigning IP addresses to the hosts
on the LAN.)
This configuration is fine for simple configurations, but if
you want to put your Pi to work as a web server or other
server system, or if you want to access the system through
SSH without checking the address every time you log in,
you might want to set your system up with a permanent
static IP address. To begin, open the /etc/​network/​inter-
faces file with a text editor:

cd /etc/network

pi@raspberrypi~$ sudo nano interfaces

Replace the line iface eth0 inet dhcp with iface eth0
inet static and add the IP address, netmask, and gate-
way address you want to use for the Raspberry Pi. The
address, netmask, and gateway will depend on the ad-
dress configuration for your network. For more informa-

tion, see your router configuration or consult an online
tutorial on TCP/​IP addressing. The following example
shows a sample entry for an address in the 192.168.77.0
address space:

iface eth0 inet static

address 192.168.77.50

netmask 255.255.255.0

gateway 192.168.77.1

If you configure a static IP address, you’ll need to tell your
Rasp Pi system where to find a DNS server. To set up
name resolution, edit resolv.conf in /etc to point to the
DNS server for the network:

pi@raspberrypi~$ sudo nano resolv.conf

nameserver 192.168.77.1

Several useful tutorials on Linux networking are available
online. Raspbian is based on the Debian Linux distribu-
tion, so the Debian wiki is a good source for networking
information [8].

Networking

17

https://www.raspberrypi.org/help/faqs/#buyingWhere
https://www.raspberrypi.org/help/faqs/#buyingWhere
http://elinux.org/RPi_VerifiedPeripherals
http://elinux.org/RPi_VerifiedPeripherals
http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads
http://www.softpedia.com/progDownload/SHA1Sum-Download-143137.html
http://www.softpedia.com/progDownload/SHA1Sum-Download-143137.html
http://www.softpedia.com/progDownload/SHA1Sum-Download-143137.html
https://www.sdcard.org/downloads/formatter_4/
https://www.sdcard.org/downloads/formatter_4/
http://sourceforge.net/projects/win32diskimager/
http://sourceforge.net/projects/win32diskimager/
http://sourceforge.net/projects/win32diskimager/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
http://wiki.debian.org/NetworkConfiguration
http://wiki.debian.org/NetworkConfiguration

We show how to work with
the terminal and install

Applications on your
Raspberry Pi

By Joe Casad, Paul C Brown,
Heike Jurzik

The articles in this issue assume you
are running the Raspbian

operating system on your Raspberry Pi.
Raspberry Pi also supports several other
operating systems. Most of these alterna-
tive systems are also based on Linux,
and many of the concepts are similar,
however, non-Linux systems such as
RISC OS and FreeBSD also support the
Raspberry Pi, and you can even find a
Raspberry Pi version of Windows called
Windows 10 IoT Core.

Raspbian [1] is actually a version of
Debian Linux that was developed specif-
ically for the Raspberry Pi. Raspbian is
the Raspberry Pi Foundation’s “officially
supported operating system,” and it is
recommended for beginning users.

The DVD attached to this issue con-
tains the Raspbian “Jessie” version,
which became available just as this
issue was going to press. If you already
own a Raspberry Pi and have already
made a Raspbian SD card (as described
in the preceding article), your system is
probably running the previous Raspbian
Wheezy edition. Many things are similar
in “Jessie” and “Wheezy,” but some dif-
ferences exist between the two versions,
and you might need to improvise as you

work through some of the instructions
you find in this issue.

In general, when you’re working with
a Linux system, it is a good idea to get
comfortable with asking questions and
looking for help online. The Help forums
at the Raspberry PI website [2] are a
good place to start.

This article provides a brief first look
at the Raspbian user interface and in-
troduces some concepts you’ll need for
the adventures later in this issue: work-
ing with the terminal and installing
new applications.

Discover Raspbian
Boot your Raspbian system, then sit
back and wait while a lot of text scrolls
over the screen. The text consists of sta-
tus messages as various components of
the system start up.

Raspbian Jessie systems (and older
systems configured for desktop startup)
will boot directly to the Raspbian desk-
top (Figure 1). If your system boots to a
command line, start up the graphic user
interface and desktop system by typing
the command startx then hitting Enter.
(See the preceding article for more on

Exploring the Raspbian Operating System

Le
ad

 Im
ag

e
©

A
le

xa
nd

r
A

le
ab

ie
v,

 1
23

R
F.

co
m

18 Raspberry Pi Adventures

Discover Raspbian

how to configure your system to boot di-
rectly to the desktop.)

Figure 1 shows some important com-
ponents of the default desktop window.
Right-click an empty space on the desk-
top for a context menu with options that
allow you to modify the appearance.
Choose Desktop Preferences to change
the wallpaper, default fonts, and other
features of the display.

A brand-new Raspbian installation
comes with a single trash can icon in the
upper left-hand corner (Figure 1.2). You
can also add other icons to the desktop
for easy access to favorite applications.
(See the “Personalizing” section later in
this article.)

Along the top is a panel (Figure 1.3)
with a menu launcher in the top left cor-
ner (Figure 1.4). Starting from the left, you
will see an application bar (Figure 1.5)
that contains icons to launch the a web
browser, a file manager, a terminal, the
Wolfram Mathematica app [3], and a
link to the Wolfram scripting language.

The middle section of the panel is re-
served for the taskbar (Figure 1.6), which
shows the windows you have open or
minimized. The far right shows your con-
nectivity, volume, CPU usage, and time
(with a drop-down calendar), along with
an eject button for media (Figure 1.7).

The raspberry icon in the upper-left
corner (Figure 1.4) lets you launch ap-
plications quickly and easily; it is similar
to the Start button on many Windows

systems. Click the button to reach a list
of preconfigured application categories
(Figure 2). You can browse through a se-
lection of preinstalled programming
tools, office tools, Internet applications,
games, and accessories.

The applications in the Preferences
menu let you choose options for custom-
izing your Raspberry Pi configuration
(Figure 3).

Personalizing
Right-click on the panel and choose Panel
Settings from the pop-up menu to change

FIGURE 1: The parts of the default Raspbian desktop: (1) wallpaper, (2) trash can, (3) panel,
(4) menu, (5) app launcher, (6) taskbar, (7) status bar.

FIGURE 2: The Raspbian
launcher menu

groups applications into
categories for easy acecss.

FIGURE 3: The Preferences menu offers
tools for configuring your

Raspbian environment. Raspbian Jessie
provides some configuration options you
won’t find in earlier versions.

19

the default application bar – it looks
like a two folders). Scroll down below
the home folder subdirectories to a
folder marked with a slash (/). Click
the plus button next to the / folder for
access to the complete filesystem, and
navigate to the /usr/share/applica‑
tions folder. This folder includes icons
for all your installed apps. Right-click
on the application you want to put on
your desktop and select Copy from the
pop-up menu, then right-click on an

what the panel looks like, add more
items, move items around, and delete the
ones you don’t want. In the Geometry
tab, you can choose the size and position
of the panel and its icons; in Appearance,
you can select the color and theme; in
Panel Applets, you can add more items
and sort them using the Up and Down
buttons (Figure 4). (In the default panel,
Up means “move one position to the left”
and down means “move one position to
the right.”)

Many of the items within the panel are
also configurable. For example, right-click-
ing in the launch bar brings up a menu
that allows you to add
app launcher, which is
very useful for creating
shortcuts to apps you
use often.

On Raspbian Jessie
systems, you can also
change some desktop
settings using by
clicking the menu but-
ton and choosing Pref-
erences | Appearance
Settings (Figure 5).

As with Windows
and Mac OS systems,
you can add an icon
for a application you
use frequently to the
desktop for easy ac-
cess. Open your file
manager (the second
icon from the left in

FIGURE 4: Adding new items to the panel
is easy.

FIGURE 5: Configuring desktop appearance
settings in Raspbian Jessie.

FIGURE 6: You can add icons to the desktop using Copy and
Paste.

20 Raspberry Pi Adventures

Discover Raspbian

empty space on your desktop and select
Paste. That’s it, or at least that’s the
easy way.

Raspbian also gives you the ability to
work with several desktop spaces at the
same time. You can configure each
desktop as a different workspace, with
different applications and different
wallpaper. (Picture this feature as being
like having two desks in your room –
one for homework and one for hobby
projects.)

Raspbian lets you have up to 16 desk-
tops, but four is probably overkill, and it
could overload your Pi and make it run
slowly. Many users are fine with just one
desktop, but if you feel like experiment-
ing, use the scroll wheel to click in an
empty space on the desktop and choose
Add new desktop.

Also, you can spin the mouse wheel to
navigate between desktops, or you can
add the Desktop Pager to your panel and
then just click on the desktop you want
to visit in the pager. To add the desktop
pager, right-click on the panel, select
Add/Remove Panel Items, and click the
Add button. Choose Desktop Pager in the
list and click Add.

You can move an active window to a
different desktop by right-clicking on the
title bar and choosing Send to desktop
(Figure 7), Or, drag the window to the
side of the current desktop to move it to
another desktop.

Working with the Terminal
Today’s users are accustomed to point-
ing with a mouse and clicking on icons
in a graphic user interface like the
Raspbian desktop. In an earlier era,
however, before computers got as fast
and powerful as they are today, users
interacted with the computer using
text-based commands. A terminal was
a big, bulky device that allowed the
user to enter text-based commands at a
keyboard and view text-based output
from the computer.

Computers don’t use text-based termi-
nals anymore, however, most operating
systems (including Windows, Mac OS,
and the Linux system that is the basis for
Raspbian), support what is called a termi-
nal emulator, a window-based application
that looks like an old-fashioned terminal
and can read and respond to terminal-
based commands.

Experienced users find it is often much
faster to work in a terminal emulator
(which is just called the terminal for
short) than to click around on icons and
windows. Perhaps more importantly,
building an application for a modern GUI
interface requires a lot of additional pro-
gramming time and effort that doesn’t re-
ally add much additional functionality.

In the free-wheeling world of Linux,
where most of the applications are avail-
able for no cost and many are maintained
and tested by volunteers, it simply isn’t
worth the effort to invest a lot of time and
energy into building an elaborate GUI-
based application to handle a simple task.
Consequently, the Linux user environ-
ment includes many tools that work best

FIGURE 7: You can send a window to dif-
ferent desktops by right-clicking

on the title bar.

FIGURE 8: Like the terminals of old, the modern-day terminal emulator receives
text-based commands from the user and often displays output

directly to the screen.

 _

|_
|

 _

|_
|

 _

|_
|

 _

|_
|

 _

|_
|

21

with the sudo command. For instance,
to delete the user clyde from the system
(Figure 9):

sudo deluser clyde

Depending on which account runs the
command and how your system is con-
figured, you might be prompted to
enter a password with the sudo com-
mand. As you learned in the preceding
article, the default user account is
called pi and the default password is
raspberry. It is a good idea to change
any default password, including your
Raspberry Pi’s default password – but
don’t forget it. (See the box titled
Change Your Password.)

Raspbian uses a structured system of
directories similar to what you are used
to if you work with Windows or Mac
OS. Commands sometimes work best if
you run them from a specific directory.
If you work with the command line,
you’ll need to learn to move around
within the directory structure.

When you open a terminal window,
most likely the terminal will open in
your home directory. Type ls to list the
contents of your directory. You can use
the cd (change directory) command to
move to another directory. You’ll also
need to mention the path to the target
directory:

$ cd /home/pi/Documents

You can use a dot (.) in the path to rep-
resent the current directory. In other
words, you could move from your home
directory to the Music subdirectory by
typing:

$ cd ./Music

A double dot means “go back one level
in the directory path,” so if you want to
go from the /home/pi/Music directory
back to your home directory (/home/
pi), you could type:

$ cd ..

Many systems also use the tilde character
(~) to represent the home directory, so no
matter where you are, you can always re-
turn to your home directory with:

$ cd ~

from a terminal, and Linux users are ac-
customed to working with the terminal,
which is also called the “shell” or “com-
mand shell” or “console.”

At several places in this issue, you
will be asked to “open a terminal” and
enter a text-based command. In Rasp-
bian, the terminal window is easy to
reach. Just click the icon in the panel
that shows a monitor with a black
screen (refer to Figure 1.5). The termi-
nal window looks like an old-fashioned
terminal (Figure 8).

The cursor sits next to a dollar sign
($), which marks the space for entering
a command. The dollar sign is a called a
command prompt. If you read or hear
the instruction to enter a command “at
the command prompt,” that means open
a terminal window and type the com-
mand. Always hit Enter after you enter a
command to send the command to the
computer.

Many commands work just fine at the
privilege level of the basic user, how-
ever, important commands that could
potentially damage the system or cause
security issues require additional privi-
leges. To run a command at an elevated
privilege level, precede the command

FIGURE 9: If the command you want to use requires a higher privilege level, use
the sudo command.

FIGURE 10: Use man to reach a quick summary of help information on a termi-
nal command.

To change your password
in Raspbian Jessie, click the
menu button and select
Preferences | Raspberry Pi
Configuration. In the
Raspberry Pi Configura-
tion dialog box, click the
Change Password button
in the System tab.
In Raspbian Wheezy, open
a terminal window and
enter:

sudo raspi‑config

to access the Raspbian con-
figuration tool (see the pre-
ceding article for more on
configuring Wheezy with
the configuration tool.
You can also change your
password using the passwd
command. You’ll need to
enter your old password
before you can change it.

Change Your Password

22 Raspberry Pi Adventures

Discover Raspbian

If you get lost when you are navigating
around in the directory structure, you
can always enter the pwd (print working
directory) command to display the name
of the current directory.

To create a new directory, enter the
mkdir command with the name you
want to give to the directory:

$ mkdir /home/pi/Music/Beatles

Or, if you were already in the Music di-
rectory, you could just type:

$ mkdir ./Beatles

The cp command lets you copy files (the
angle brackets, <>, indicate a parameter
that you supply):

cp <source_file> <destination_file>

The default is to look in the current di-
rectory; however, you can include a path
with the source or destination to copy to
or from a different directory. Of course,
you must have the necessary permis-
sions to access the directory.

The mv instruction moves files or
whole directories from one place to an-
other. If the instruction is used on files
or directories that are not moving, it re-
names them. For example,

mv file1 dir/

will move file1 into directory dir/
hanging off the current directory. But

mv file1 file2

will change file1’s name, renaming it
file2.

To delete a file, use the rm (remove)
command, and to delete a directory,
use rm ‑r or rmdir. Needless to say,
you must be careful how you use these
commands.

A summary of these basic commands
is shown in Table 1. Each of the com-
mands includes additional options. A
utility called man provides a quick de-
scription and a summary of command-
line options, which you can see by typ-
ing man <command>. For instance, to
obtain information on the deluser
command used in Figure 9, enter:

man deluser

Apt Package Manager
Another task you’ll need to learn when
you’re working with Raspbian is adding
applications. Because of the space limi-
tations of the sparse, SD-based storage
system, Raspbian is preconfigured with
only a minimal set of applications. Luck-
ily, it is easy to add new applications to
your Raspbian system.

Most Linux systems make new appli-
cations available through a system of
Internet-based servers known as app
repositories. These repositories are the
predecessors of the app stores you use
to obtain new programs for your
smartphone.

Raspbian’s Apt (Advanced Package
Tool) system lets you download and in-
stall new applications easily.

Do not go hunting for software on the
Internet without checking the Raspbian re-
positories first. Linux users download and
install the majority of their software from
approved and reliable repositories and
very, very rarely stray onto the web to
download apps. Furthermore, Raspbian
comes with a set of official online reposi-
tories already config-
ured, so, if you need
to install new pro-
grams, you can get
started right away.

An application is
stored in the reposi-
tory in the form of
package. The pack-
age contains the ap-
plication itself, plus
sometimes some
supporting software
and instructions for

Command Action

ls List contents of the current directory
cd Change directory
pwd Show current working directory
mkdir Make directory
cp Copy file(s)
mv Move or rename a file or directory
rm Remove file(s)
rmdir Remove directory

TABLE 1: Some Basic Terminal Commands

FIGURE 11: The apt-get tool allows you to install software from the Raspbian
repositories.

23

 _
|_|

 _
|_|

 _
|_|

 _
|_|

 _
|_|

treasury of information about packages
and your system. For example,

apt‑cache showpkg <packagename>

shows which version is installed, the
latest version available in the reposito-
ries you are using, and the reverse de-
pendencies of the packages (i.e., which
packages depend on it).

Similarly, apt‑cache dump lists all the
packages you have installed, and
apt‑cache stats offers information
such as the number of installed pack-
ages and the total number of dependen-
cies. An especially useful option is
apt‑cache search <string>, which
tracks down the exact name of a pack-
age or packages that you might want to
install by searching for the <string>
you provide as an argument. If you
wanted to install, say, a Minesweeper-
type game, you could type

$ apt‑cache search minesweep

and Apt will return all programs that
contain the word “minesweep” in its
name or description.

Running Headless with SSH
Most of the articles in this issue assume
your Raspberry Pi computer is con-
nected directly to a keyboard and
mouse. However, many users don’t have
a spare keyboard and mouse to use for
their Raspberry Pi. Also, in some cases,
it might be easier to talk remotely to
your Raspberry Pi from another com-
puter on the network. SSH (short for
“Secure Shell”) lets you send commands
to your Raspberry Pi system from an-
other computer on the network.

The first step is to make sure your
Raspberry Pi is configured to act as an
SSH server. The SSH server is enabled

the computer on how to configure the
application. The basic command for
adding a software package is simply

sudo apt‑get install <package‑name>

When you enter the command, you usu-
ally get a complete summary of what will
happen if you go through with the instal-
lation, including the dependencies that
will be installed, the packages that will
be upgraded and removed, and the
amount of disk space that will be re-
quired (Figure 11). Unless the action can
proceed automatically without affecting
anything else, you have the choice of
continuing the process or not. Just to be
sure what you typed doesn’t include any
unpleasant surprises, you should read the
summary carefully before continuing.

As apt‑get works, it shows which
package it is downloading and its prog-
ress, as well as the download speed and
the amount of time required to finish the
operation. The times are only estimates
and will change as the Internet connec-
tion speed changes. Once the downloads
are complete, apt‑get installs the soft-
ware, sometimes pausing to ask ques-
tions about how you want it installed.

After everything is done, apt‑get exits
with a summary of any problems that it
encountered. As a final touch, if the soft-
ware you just installed is a graphical appli-
cation, it is added to your desktop menus.

You can remove packages by using

sudo apt‑get remove <package‑name>

but this process could leave configura-
tion files behind. If you want to get rid
of all traces of a package, use

sudo apt‑get purge <package‑name>

The instruction sudo apt‑get autore‑
move will remove all old and unused
packages.

If you want to check for updates for all
the software installed on your Pi, use

$ apt‑get update

and Apt will track down all the newer
versions in the online repositories and
install them for you.

The Apt system includes several other
tools, but by far, the most useful pack-
age utility is apt‑cache, which offers a FIGURE 12: Enabling SSH in Raspbian

Jessie.

24 Raspberry Pi Adventures

Discover Raspbian

by default on many Raspbian systems.
On Raspbian Jessie systems, click the
Start button and select Preferences |
Raspberry Pi Configuration. Click the
Interfaces tab and be sure SSH is en-
abled (Figure 12).

On Raspbian Wheezy systems, you
have a chance to enable or disable SSH
as one of the Advanced Options when
you when you start the system for the
first time (see the preceding article for
more on configuring Wheezy systems).
If you disabled SSH initially and want to
enable it later, open a terminal window
and enter:

sudo raspi‑config

to relaunch the configuration dialog dis-
cussed in the previous article. Look for
SSH in the Advanced Options.

You’ll also need to make sure the other
computer you are using to connect to the
Raspberry Pi is configured to act as an
SSH client. Windows, Mac OS, and Linux
all support SSH, and often the SSH client
is enabled by default in the terminal em-
ulator program. See the vendor docu-
mentation for your operating system.

To start the SSH connection to connect
to the Raspberry Pi, you need to find out
the Rasp Pi’s IP address. If you wanted
to connect a keyboard and mouse to the
Rasp Pi temporarily, you could deter-
mine the IP address using the ifconfig
command. However, since the point of
this section is to explain how to connect
without putting a keyboard and mouse
on your Raspberry Pi, I’ll offer another
approach, although you’ll need to know
a little about home networking.

My test machine has an Ethernet port
and a USB wireless adapter. I’ve con-
nected the to the local network via a
router. The router assigns IP addresses
to devices on the network using the
DHCP protocol (the default approach for
most home routers) [4].

After booting the device, I visited the
router’s configuration web interface and
had a look at the DHCP settings listed for
the connected devices. Figure 13 shows
my local setup at home: Apart from a
Macbook (hostname lion, IP
192.168.2.38), the Raspberry Pi with the
hostname raspbi is connected via Ethernet
(192.168.2.48) and WLAN (192.168.2.49).

To connect via SSH, I use the follow-
ing command:

ssh username@IP‑address

Replace username with the
name of your account on the
Raspberry Pi (the default
login name is pi) and IP-
address with the number
you found out earlier:

ssh pi@192.168.2.49
password for pi:

The standard password is raspberry (un-
less you have changed it, which is a
good idea). Note that you won’t see any
visual feedback when you type it. After
you’ve successfully logged in, you will
see the command line prompt:

pi@raspbi ~ $

After you have logged in via SSH, you
can use most of the terminal commands
discussed earlier in this article. In the
standard configuration, the user pi can
gain admin privileges with the sudo
command and its own password:

pi@raspbi ~ $ sudo ‑i
[sudo] password for pi:
root@raspbi:~#

Alternatively, you can put sudo in front
of a single command that needs admin
privileges.

Note that, if your system assigns IP
addresses using DHCP, the address
could change the next time you use your
Raspberry Pi. See the preceding article
for more on how to configure your IP to
have a permanent, static IP address.
Note that you’ll also have to set up your
router to reserve the address. See your
router documentation.

Conclusion
This article introduced the Raspberry Pi
user interface and described how to in-
stall applications and work with the ter-
minal. These skills will serve you well as
you start your later adventures with the
Raspberry Pi. X

FIGURE 13: The test machine with the hostname “raspbi” is connected to a
router and shows up in the list of DHCP clients.

Info
[1]	� Raspbian

http://​raspbian.​org/
[2]	� Raspbian Forums:

https://​www.​raspberrypi.​
org/​forums/

[3]	� Wolfram Mathematica:
http://​www.​wolfram.​com/​
raspberry‑pi/

[4]	� DHCP:
https://​en.​wikipedia.​org/​
wiki/​Dynamic_Host_Con-
figuration_Protocol

25

http://raspbian.org/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
http://www.wolfram.com/raspberry-pi/
http://www.wolfram.com/raspberry-pi/
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

In this workshop, you will learn how to install a web server on your Raspberry Pi and
build a simple website with basic HTML commands.

 By Heike Jurzik and Joe Casad

The Internet is a vast network of com-
puters reaching across

the whole world. Much of the Internet
experience you know today occurs
through a system of tools and technolo-
gies known as the World Wide Web.
What you know of as the web is really
just a huge collection of computers
communicating with a common set of
rules.

Like many other Internet technologies,
the web operates through the basic in-
teraction of a client and server. When
you surf to a website, your web browser
(which is actually a web client) asks a
web server for the contents of a web
page (Figure 1). The server sends the in-
formation back, and the web browser
assembles the parts of the page (text,
pictures, and links) to display in the
browser window (Figure 2).

The communication system the web
client and web server use to talk to each
other is called Hypertext Transfer Proto-
col (HTTP), and the system for encoding
information on the format and contents
of a web page is called Hypertext
Markup Language (HTML).

Busy modern websites incorporate
several other additional steps and fea-
tures. The HTML data is generated dy-
namically, rather than stored in an ordi-
nary file. Communication between the
client and server is often encrypted, and
other services, like a database server,
might hold all or part of the data. But
the classic interaction shown in Figure
1, where a client requests a web page
that the server delivers the page in the
form of an HTML document, is the fun-
damental process at the foundation of
the World Wide Web.

Like almost any other com-
puter in the world today,

your Raspberry Pi sys-
tem can easily act as a
web client. Just click on
the globe icon in the

Raspbian top menu bar to

Express yourself!
Apache, HTML, and More

Le
ad

 Im
ag

e
©A

le
xa

nd
r

A
le

ab
ie

v,
 1

23
R

F.
co

m

26 27Raspberry Pi Adventures

Your own Website

open the Epiphany web browser, and
enter a web address in the address bar.
(You have to be connected to the Inter-
net.) Behind the scenes, the browser ap-
plication sends a request in HTTP to the
web server specified in the address bar.
The web server returns a reply in HTTP.
Over the course of the communication,
the web server will transmit the contents
of the web page, encoded in HTML for-
mat. The browser will receive the HTML
file and will use the information in the
file to assemble the contents into the fin-
ished page you view in your browser
window.

Your Raspberry Pi can also act as a web
server. Of course, your tiny Pi is not fast
enough or powerful enough to be one of
those big servers providing content to
thousands of users on the open Internet.
Also, the complexity of the security con-
figuration for a real Internet web server
means the Pi is not a suitable candidate
for building an actual Internet-ready pro-
duction server system. But you can still
set up a Rasp Pi computer as a web
server for your own home network. You
can experiment with creating your own
web pages and use your Pi web server to
post information for your family, like
schedules, notes, and favorite recipes.

As you work on building your Rasp Pi
website, you will learn how web servers
work and get some first-hand experience
with HTML.

Understanding URLs
Everything on the web has an address.
The familiar address string you have
seen in the address bar of your browser
is known as a Universal Resource Loca-
tor (URL). The URL is actually a special
case of a more general form called a Uni-
versal Resource Indicator (URI); how-
ever, the term URL has persisted and is
still in common use.

The basic form for a URL is:

scheme://domain/path

The scheme specifies the protocol used
for the communicating with the re-
source. The web uses the HTTP proto-
col, so the scheme is http.

The domain is typically the domain
name of the network where the resource
resides, as described by the Internet’s
DNS naming system. Familiar names

like www.​google.​com and www.​
whitehouse.​gov are DNS domain names.
The tasks of configuring and registering
a DNS name is not necessary for a little
Rasp Pi web server on a home network.
Instead, you can just use the IP address
of the Raspberry Pi system.

The path is the series of subdirectories
leading to the file, along with the file-
name. If the URL does not include a
path, the web server will look for the de-

FIGURE 1: Communication on the web follows a client-server model. The client
asks for a resource such as a web page, and the server transmits that

resource in the form of an HTML document.

FIGURE 2: To request a web page, the user enters a URL in the address bar of a
web browser. The web server sends back an HTML document, which

the browser assembles into the graphical display the user sees in the browser.

26 27Raspberry Pi Adventures

http://192.168.2.49

Several other optional parameters can also
be part of a URL. You could include a login
name and password, as well as a port
number, search terms, and other informa-
tion. If you decide to continue to expand
and develop your Raspberry Pi website,
you could experiment with adding login
information and creating a network path
with access to other files and directories.

Introducing Apache
Apache is the most popular web server,
and it runs on millions of computers
around the world. Apache is also easy to
install and use, and it is extremely well
documented. The Apache web server is
actually an application that runs on the
web server computer.

Apache listens for incoming requests
from browsers on the network request-
ing web pages. When Apache receives a
request from a web client, it finds the
HTML file specified in the URL that
came with the request and transmits the
HTML data back to the web client. Of
course, as I mentioned before, big mod-
ern web servers behave in much more
complicated ways, but this simple sce-
nario is all you need for your Raspberry
Pi web server system.

To install the web server, be sure your
Raspberry Pi is connected to the Internet
and type the following command:

sudo apt‑get install apache2

As you can see in Figure 3, the package
manager resolves all dependencies and
offers to install additional software pack-
ages. Hit Y and Return to continue. After
APT has downloaded, unpacked, in-
stalled, and configured the software, if
all goes well, your new web server will
start automatically.

Once the application has started, it
will listen on the network for incoming
HTTP requests. You can easily confirm

fault filename index.html. The “home
page” for many websites is actually the
index.html in the web server directory.

From your local network, you’ll be
able to reach your Rasp Pi web server by
entering the URL:

http://IP_address

IP_address is the IP address of your
Raspberry Pi system. For example:

FIGURE 3: To set up the Apache web server, simply install the package
“apache2” and confirm the package manager’s selection and

suggestions.

FIGURE 4: Open the default website either on the Pi, or (as in this example) in a
web browser on another computer on the network. The image shows

the default page for Raspbian Jessie.

To find the IP address of your Raspberry Pi system, open a terminal window the on
your Raspberry Pi and enter the ifconfig command (Figure 5). If you’re using a stan-
dard Ethernet cable to connect your Raspberry Pi with the network, use the IP ad-
dress for the eth0 interface, labeled “inet addr” in Figure 5.

Finding the IP Address

28 Raspberry Pi Adventures

Your own Website

that the web server is running. In a
browser window, on the Raspberry Pi,
visit the address http://​localhost to see
the default web page. Alternatively, if
you are accessing the web page from
another computer on the local net-
work, use the IP address of the Rasp-
berry Pi system http://​IP-address. For
example, enter:

http://192.168.2.49

to visit the new site (Figure 4). See the
box titled “Finding the IP Address” for
more on finding the IP address for your
Raspberry Pi system. The “Managing
Apache” box provides some additional
information of managing your Apache
server system.

Discovering
HTML
Once your
Apache web
server is up and
running, you can
experiment with
building your
own web page.
The default web
page (refer to Fig-
ure 4) is located
in /​var/​www/​
index.​html if you
are using Rasp-

bian Wheezy or in /​var/​www/​
html/​index.​html if you are run-
ning the more recent Raspbian
Jessie edition. If you are using a
different operating system on your
Raspberry Pi, consult your vendor doc-
umentation (or just search for index.
html).

The index.html file belongs to the
user and group root. Before you
change the index.html file, change
into the directory with the index.html
file and make a backup copy of the
original:

cd /var/www/html
sudo cp /var/www/html/index.html U
 /var/www/html/index.html.orig
[sudo] password for pi:
sudo nano index.html

FIGURE 5: Enter the ifconfig command on the Raspberry Pi system to
discover the Pi’s IP address.

Once you install and reboot, the Apache server should start automatically. If you
need to manually start, stop, or restart Apache, use the systemctl command. The fol-
lowing command:

sudo systemctl stop apache2.service

stops all Apache processes. This command:

sudo systemctl restart apache2.service

first stops and then restarts Apache (it will start the web server if it wasn’t running
before). Another useful systemctl option is status, which gives you more informa-
tion about the web server and even informs you if there are syntax errors in the con-
figuration (Figure 6).
For your Raspberry Pi home web server, you should be able to use the standard
Apache configuration settings. However, if you feel like experimenting with some of
the parameters that define Apache’s behavior, the main Apache configuration file is
/etc/apache2/apache2.conf. See the notes in the file for more on what the parame-
ters do and how they affect your Apache installation.

Managing Apache

29

GUI (Figure 7). Use the arrow keys to
move the cursor to the text you wish to
change.

Look for the string “It works” and
change that to something else. When you
are finished making changes, type Ctrl X
to exit. Nano will ask if you wish to save
the changes. Type y for “Yes,” then hit
Enter when Nano suggest rewriting the
file to index.html. Refresh the site in
your Rasp Pi web browser by entering
the address http://localhost.

Basic HTML
HTML files are plain text files that use
tags in angle brackets to describe the
structure of the site. The tags tell the
browser how to interpret the text inside
the tags. For example, a tag could indi-
cate a heading, paragraph, or picture.

Listing 1 shows a simple HTML file:
First, the DOCTYPE declaration defines
the document type. As you can see, the
other tags all come in pairs. The first tag
is the opening tag, and the closing tag
usually contains a slash before the tag
name:

<tag>content</tag>

If you look at the tags in Listing 1, you
can see tag pairs that indicate the
HTML document (<html>), the header
(<head>), the body, i.e., the visible
page content (<body>), a heading
(<h1>), and a paragraph (<p>). Put the
content of Listing 1 into the file index.
html, save the changes, and refresh the
site in the web browser. Figure 8 shows
the result.

One of the important characteristics
of HTML is its use of links. A link is a
reference to another page (or another
part of the page). When the viewer
clicks on the link, the new page opens
in the browser. Links let the web de-
signer incorporate outside information
into the website in an organic and
free-flowing way. The tag for a link
must contain the URL of the page ref-
erenced in the link, as well as the
highlighted, underlined text that the
user will click on.

To define the string “Linux Pro Maga-
zine” as a link that points to the website
http://​www.​linuxpromagazine.​com/, use
the <a> tag and define the target with
the href attribute:

To edit this file, you must first gain
admin permissions. Use the sudo com-
mand to start a text editor The standard
text editor on Raspbian is Nano; it is
easy to use and shows helpful hints at
the bottom of the window. For Raspbian
Jessie, enter:

sudo nano /var/www/html/index.html

For Raspbian Wheezy:

sudo nano /var/ww/index.html

Nano provides a primitive, text-based

FIGURE 6: The systemctl status command gives you information about the
Apache web server. Use the ‑l option to see more details. This exam-

ple shows a syntax error in the file /etc/​apache2/​apache2.conf.

FIGURE 7: Use the Nano text editor to edit the index.html file. Remember to use
the sudo command when you are starting Nano so you will have the

privileges necessary for saving the file.

30 Raspberry Pi Adventures

Your own Website

This is a link to <a href=U
 "http://www.linuxpromagazine.com/">U
 Linux Pro Magazine.

Experiment with adding links to your
index.html file. You can link to an out-
side website, or, if you are in a building
mood, create additional pages for your
Raspberry Pi website by adding the path
to the URL:
http://192.168.2.49/path

where path is a structure of directories
leading to the file followed by the file-
name.

For instance, you could create a sub-
directory in the directory with your
index.html file called photos and
place a file in the photos subdirectory
called photos.html with links to pho-
tos of your latest vacation. If the IP ad-
dress of the Raspberry Pi machine is
192.168.2.49, the URL for the photos
page would be:

http://192.168.2.49/photos/photos.html

The link on the index.html home page
could say something like:

<P>Check out the photos of my U
 <a href="http://192.168.2.49/photos/U
 photos.html">wild and crazyU
 vacation to Delaware!</p>

The photos.html file might contain
links to the actual image files (as de-
scribed in the next section), along with
notes and commentary on favorite mo-
ments of the journey.

The photo files themselves could
also go in the photos subdirectory for
a convenient and portable solution.
See the box titled “Absolute or Relative

Directory” for more on linking to di-
rectories in HTML.

Tags and Attributes
An HTML attribute provides additional
information, for example, a URL to an
external website. Attributes come in
handy when you want to embed a pic-
ture into a website.

First, you need the tag . Inside
of the tag, you specify the source
file (src), alternative text to add a short
description for people who use a text
browser or screen reader (alt), and two
attributes that define the width and
height:

<img src="l‑m.jpg" U
 alt="Linux Magazine logo" width="220" U
 height="97">

Note that the tag has no end tag.

01 �<!DOCTYPE html>

02 �<html>

03 � <head>

04 � <title>Hello, World!</title>

05 � </head>

06 � <body>

07 � <h1>This is a Heading</h1>

08 � <p>This is a paragraph. Hello, World!</p>

09 � </body>

10 �</html>

LISTING 1: Hello, World!

FIGURE 8: HTML describes the structure of a document. The code in
Listing 1 produces this simple web page.

For clarity and simplicity, the example of the link to the photos subdirectory:

wild and crazy

gives the full URL of the new page. This type of link is known as an
absolute link because it provides the complete path to the resource
from anywhere on the network. In practice, web designers are more
likely to use a relative link to link to a subdirectory. A relative link just
shows the part of the path that below the current directory to the loca-
tion of the file. For instance:

wild and crazy

is the same link expressed as a relative link.
A relative link saves a little typing. Perhaps more importantly, a relative
link is more portable: if you decide to move your web server to another
computer, you can copy the accompanying structure of subdirectories,
and the links will still work.

Absolute or Relative Directory

31

Of course, the HTML specification has
many more tags, and if you combine
HTML with CSS (Cascading Style
Sheets) or a scripting language, you can
build complex websites with dynami-
cally created content. W3Schools [5] of-
fers some interesting tutorials with lots
of examples for HTML, CSS, and more.
Table 1 shows a list of interesting tags
and their meanings. X

Info
[1]	� Raspbian: https://​www.​raspbian.​org/
[2]	� PuTTY download:

http://​www.​chiark.​greenend.​org.​uk/​
~sgtatham/​putty/​download.​html

[3]	� Apache: http://​httpd.​apache.​org/
[4]	� Upgrading Apache from version 2.2 to

2.4: http://​httpd.​apache.​org/​docs/​2.​4/​
upgrading.​html

[5]	� W3Schools:
http://​www.​w3schools.​com/

Sometimes, you might want to add a
comment to your HTML document that
is only visible in the source code, not in
the browser:

<h1>This is a Heading</h1>
<!‑‑ will insert correct heading later ‑‑>

Although HTML was mainly designed to
describe the structure of a website, it
supports simple formatting tags. To indi-
cate bold or italic text, use or :

<p>This is <i>italic</i>;U
 this is bold.</p>

To insert a horizontal line in an HTML
page, use <hr>. Like the tag,
<hr> has no end tag. It’s also possible to
define unordered (bulleted) and ordered
lists. Both require the outside tags for
the list definition (and) and
the tag for the list items:

 apples
 pears
 bananas

<hr>

 apples
 pears
 bananas

Tag Description

<!-- --> A comment that is not visible on the website.
<!DOCTYPE> Describes the document type.
<html> Defines the root of the HTML document.
<head> The header contains information about the document.
<title> Sets a document title.
<body> Definition of the document’s body.
<h1>, <h2>, … <h6> Up to six different headings are possible.
<p> Defines a paragraph.
<hr> Prints a horizontal line.
 Bold text.
<i> Italic text.
 Inserts an image.
<a> Describes a hyperlink.
 Inserts an ordered list.
 An unordered list.
 Defines a list item for both list types, ordered and unordered.

TABLE 1: HTML Tag Reference

32 Raspberry Pi Adventures

Your own Website

https://www.raspbian.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://httpd.apache.org/
http://httpd.apache.org/docs/2.4/upgrading.html
http://httpd.apache.org/docs/2.4/upgrading.html
http://www.w3schools.com/

Help your Raspberry Pi see the world with
the Pi camera module.

 By Dmitri Popov

The Raspberry Pi camera module is a
special cam-

era that connects to your Raspberry Pi.
You can use your Raspberry Pi camera to
take pictures as you would any other
camera, but because your Pi camera is

connected to a computer, you can
build it into lots of other kinds of

projects. If you know a little

programming, you can put your Pi cam-
era to work for projects such as balloon
aerial photography, video monitoring, or
a scary Halloween pumpkin that lights
up automatically when someone enters
the room.

This article shows how to install and
configure your Raspberry Pi camera and
looks at some basic commands for tak-
ing pictures with your Pi. You’ll even
learn to use your Pi for time-lapse pho-
tography, and you’ll get a quick look at
how to embed camera commands into a
Python script.

The camera module is no match for a
proper camera or even a decent smart-
phone camera. But it’s tiny, cheap, and
configurable, so it’s a great little gizmo
for all sorts of fun and useful projects.

Getting the
Raspberry Pi Camera
The camera doesn’t come with the Rasp-
berry Pi: you’ll need to order it sepa-
rately. Most of the online stores that sell

• �Raspberry Pi Computer – According
to the Raspberry Pi Foundation, all
models support the camera module.

• �Raspberry Pi Camera Module –
Most Raspberry Pi distributors also
sell the camera module, which you
must purchase separately. This arti-
cle discusses the standard Rasp Pi
Camera Module, not the Pi NoIR
camera, an infrared-sensitive device
for low-light photography.

PARTS LIST

Pi Eye
Exploring the Raspberry Pi Camera

Le
ad

 Im
ag

e
©

A
le

xa
nd

r
A

le
ab

ie
v,

 1
23

R
F.

co
m

34 Raspberry Pi Adventures

Pi Camera

the Raspberry Pi sell the Raspberry Pi
camera module as well. Consult your fa-
vorite Raspberry Pi vendor for more in-
formation on obtaining the camera. The
camera typically sells for less than US$30.

Connecting the camera module to
Raspberry Pi is easy, but there is one im-
portant thing you need to keep in mind.
Did you notice that the camera comes
packed in a silver bag? This bag protects
the camera from static electricity that can
damage its delicate electronics. So, before
you unpack the camera, you need to
make sure that no static electricity is
lurking in your body. The easiest way to
do this is to touch something metal, such
as a radiator, in your home. You should
always avoid touching the camera mod-
ule’s contacts and electronic components.

Raspberry Pi has a special CSI camera
connector that sits between the HDMI
and sound ports. To unlock the camera
connector, use your fingers to grab the
connector’s plastic tab and gently lift it
up. Take the camera module, make sure
the contacts at the end of the ribbon
cable face the HDMI port, an insert the

cable into the connector. Hold the cable
in place and gently lock the tab by push-
ing it back down. If you did it correctly,
the cable should sit straight and firmly
in the connector. If you don’t get it right,
no problem: Lift the tab and try again.
Check the official camera setup video
[1] to make sure you do this right.

Enabling the Camera
The next step is to enable the camera in
Raspberry Pi, so the machine can actu-
ally detect and control it. On Raspbian
Jessie systems, click the Menu button,
chose Preferences | Raspberry Pi Configu-
ration, and select the Interfaces tab to
enable the camera.

On Raspbian Wheezy, raspi‑config
offers an option for configuring the Rasp-
berry Pi camera. Boot your Raspberry Pi
to the Raspbian desktop. Click the Menu
button and choose Accessories | Terminal
to open a terminal window. In the termi-
nal window, type:

sudo raspi‑config

Pi Eye

35

•	raspistill – for still photos
•	raspivid – for videos
Once your Rasp Pi camera is connected,
and your Raspbian system is configured
to talk to the camera (see the preceding
section), enter one of these commands
in a terminal window to take a picture.
The commands come with several op-
tions and flags that let you pass addi-
tional information to the Raspberry Pi
about about how to take the picture and
where to store the image file.

Open a terminal window and enter the
following command:

raspistill ‑o photo.jpg

The ‑o flag specifies the name of the re-
sulting photo. The red LED on the cam-
era should turn on, indicating that the
camera is taking a picture. When the
LED turns off, you should see the
photo.jpg file in the home directory.
Congratulations, the camera works! By
the way, if the camera is mounted up-
side-down, the photo may come out
topsy-turvy. Fortunately, this is easy to
fix using the ‑vf and ‑hf flags:

raspistill ‑vf ‑hf ‑o 001.jpg

The camera can take videos, too. To re-
cord a video, run the command:

raspivid ‑o movie.h264 ‑t 5000

The ‑t flag specifies the duration of
the recording in milliseconds. See the
box called “Exploring Raspberry Pi
Camera Options” for more on the vari-
ous options for taking picture with the
Raspberry Pi camera.

Time-Lapse Photography
Have you ever seen a movie that
shows how a plant grows from a seed
to a blooming flower in just a few min-
utes? The trick used to create these
kinds of videos is called time-lapse
photography, meaning that you take
photos at regular intervals (e.g., every
5 seconds) over a long period of time,
then assemble the photos into a movie.
Creating time-lapses requires time and
patience, and usually involves some
serious gear and software. However,
you can use a Raspberry Pi with the Pi
camera module and an open source

and press Enter. In the Raspbian config-
uration utility (Figure 1), use the arrow
keys to scroll down to the Enable camera
item and hit Enter. In the next dialog
box (Figure 2), press the right arrow key
and scroll to Enable, then hit Enter, and
scroll to Finish in the main configuration
window. Hit Enter and select Yes to re-
boot your Raspberry Pi.

Take a Pic
The camera is connected to the Rasp-
berry Pi, so to get the camera to take a
picture, you need to tell the Raspberry Pi
to take a picture. The Pi camera is capa-
ble of taking video as well as still pho-
tos. The two primary commands for op-
erating the Raspberry Pi camera are:

FIGURE 1: The Raspbian configuration utility offers several configuration
options, including support for the Raspberry Pi camera.

FIGURE 2: The config utility asks if you’re sure you want to enable; scroll to
Enable and hit the Enter key.

36 Raspberry Pi Adventures

Pi Camera

video tool to create impressive time-
lapse movies.

For your first time-lapse project, you
may want to try something simple, like
creating a short time-lapse clip of a sky
with moving clouds. Place your Rasp-
berry Pi in the window and point the Pi
camera in the right direction (you may
need to take a couple of test shots to
find the best position).

Next, you need to do some calcula-
tions to find out how many photos to

take
and at
what in-
tervals. To
do this, use the
Timelapse Calculator [2] (Figure 3).
First, choose Shooting Interval from the
Calculate drop-down list. Specify the de-
sired length of the final movie in the Clip
length field: 30 seconds should be good
enough for the first project. In the Event
duration field, enter the duration of the

The raspistill command supports several flags that can help you explore the cam-
era’s capabilities and learn a few important basics for taking good photos.
If you think the photos taken by the camera module look dull – washed out with not
very bright colors – you can adjust three parameters that can improve the output pic-
ture. The ‑‑contrast flag increases the difference between dark and light areas of the
image, and the ‑‑brightness flag brightens up the whole picture. Both flags accept
values between 0 and 100. So, if you want to increase contrast and brighten the out-
put picture, the raspistill command might look something like this:

raspistill ‑‑contrast 5 U

 ‑‑brightness 51 ‑o photo.jpg

To make colors look more vivid, you can increase the difference between colors using
the --saturation flag:

raspistill ‑‑saturation 35 ‑o photo.jpg

Unlike the ‑‑contrast and ‑‑brightness flags, ‑‑saturation accepts values be-
tween ‑100 and 100. So, you can both increase and decrease saturation. For exam-
ple, if you want to convert the output image into a black-and-white picture, set
saturation to ‑100.
Normally, the camera module chooses the optimal settings automatically. However,
any camera can sometimes become confused and pick the wrong settings, and the Pi
camera is no exception. Fortunately, you can specify important options manually to
get better results. Use the ‑‑exposure flag to manually select the capturing mode. Sup-
pose you want to photograph a dark object on a bright background (e.g., a blackbird
sitting in a window). The camera has the backlight mode just for this kind of situa-
tion:

raspistill ‑‑exposure backlight U

 ‑o photo.jpg

If you need to take a picture in low light, use the night mode, and use the antishake
mode can be useful for reducing camera shake.
The ‑‑metering option also can help you deal with difficult lighting situations. The
spot metering mode, for example, measures light only in the small area in the center
of the frame instead of automatically evaluating the entire scene. This tool can be use-
ful when you need to “focus” metering only on a certain object in the scene:

raspistill ‑‑metering spot ‑o photo.jpg

If the output image has unnatural colors, the camera probably used the wrong white
balance settings. You can try to fix that by choosing the white balance mode manu-
ally. On a cloudy day, for example, try using the cloud white balance:

raspistill ‑‑awb cloud ‑o photo.jpg

Exploring Raspberry Pi Camera Options

37

counter with a leading zero. When the
command saves the image file, it replaces
the string with a number sequence:
photo0001.jpg, photo0002.jpg,
photo0003.jpg, and so on. To keep all
time-lapse photos neatly organized on
your Raspberry Pi, create the timelapse
directory, and switch to it in the terminal:

mkdir timelapse
cd timelapse

Run then the rasptill timelapse
command and wait till it finishes taking
photos.

The final step is to assemble the pho-
tos into a movie. The easiest way to turn
the photos into a time-lapse movie is to
use the mencoder tool. To install men-
coder on Raspberry Pi, run the sudo
apt‑get install mencoder command
(be sure you’re connected to the Inter-
net, so your Pi can download the men-
coder software).

Mencoder is a clever little tool that can
do all kinds of tricks with videos: con-
verting them from one format to an-
other, tweaking video quality, and edit-
ing movie clips. You can also use men-
coder to turn a photo set into a movie.
Before you launch mencoder, however,
you need to create a text file containing
a list of all photos you wish to assemble
in a movie. In the terminal, switch to the
timelapse directory and run the com-
mand ls *.jpg > photos.txt. Use

time-lapse session
(how long you want
the camera to take
photos). One hour is
a good starting point.
Set the Frame per sec-
ond field to 24.

The higher the frame
rate you choose, the
“smoother” the final
movie will be. Usually
24 and 30 frames per
second produce good
results. Finally, enter
2.5 (that’s the average
size of a photo taken
by the Pi camera mod-
ule) into the Image
size field to calculate
how much space the
photos will occupy.
Now, note the calcu-
lated values. For a
30-second movie at 24 frames per sec-
ond, you will need to take 720 photos at
5-second intervals. The entire session

will take one hour, and the pho-
tos will require 1.76GB stor-

age space.
Of course, you don’t

have to take 720 pho-
tos at exactly 5-sec-
ond intervals manu-
ally. Using the
raspistill com-

mand with the
‑‑timelapse and

‑‑timeout flags, you can
automate the whole pro-

cess. The ‑‑timelapse flag
specifies the interval between

photos in milliseconds, whereas
the ‑‑timeout flag specifies the

duration of the time-lapse in milli-
seconds. Here is the command that
takes photos at 5-second intervals

(which equals 5000 millisec-
onds) for one hour (1 hour =
60 minutes, 1 minute = 60
seconds, 1 second = 1000

milliseconds, so 60x60x1000 is
3600000 milliseconds):

raspistill ‑‑timeout 3600000 U
 ‑‑timelapse 5000 ‑o photo%04d.jpg

If you look closely, you’ll notice that the
name of the output image has the %04d
part in it. This string acts as a 4-digit

FIGURE 3: Use the Timelapse Calculator to determine timelapse
settings.

38 Raspberry Pi Adventures

Pi Camera

the command below to generate a time-
lapse movie:

mencoder ‑nosound ‑ovc lavc ‑lavcopts U
 vcodec=mpeg4:aspect=16/9:vbitrate=U
 8000000 ‑vf scale=1920:1080 66 U
 ‑o timelapse.avi ‑mf type=jpeg:fps=24 66
 mf://@photos.txt

See the mencoder documentation for
more on the flags and parameters used
in this command. Basically, the com-
mand uses the photos.txt list to gen-
erate a movie clip without sound in
MPEG4 format. Once the movie has
been generated, you can watch it on
your Raspberry Pi using the omxplayer
media player. This command-line
video player is optimized for Rasp-
berry Pi, so it’s perfect for watching
videos. To view the time-lapse video,

simply run the omxplayer
timelapse.avi command from the
timelapse directory.

Going Further with Python
The raspistill and raspivid com-
mands offer many options for control-
ling your camera interactively from a
terminal window. Once you get used to
the camera and get some basic experi-
ence with writing programs, you’ll have
lots of options for how to use the camera
in your Raspberry Pi projects. You could
place your Rasp Pi camera near a bird’s
nest to record images of the birds. Hook
up your Pi to a motion detector or send
your Rasp Pi for a balloon ride.

Raspberry Pi users often use the Py-
thon scripting language to automate
their Rasp Pi projects. (See the article on

Suppose you want to use your web browser to take a photo and immediately view
it. To do this, you can build a simple web app using the Python Bottle module. The
bottle module provides a framework that lets you use your Raspberry Pi as a mini-
web server. This exercise assumes your Raspberry Pi is connected to your local net-
work and your local router has a means for assigning IP addresses through DHCP.
Start with installing the module by running these commands in the terminal:

sudo apt‑get update

sudo apt‑get install apt‑get install python‑pip

sudo pip install bottle

Create a new text file in a text editor and enter the code in Listing 1 into it. Save the
file as webpicam.py. Create another text file, enter the code in Listing 2 into it, and
save it as takephoto.py. Then, run the following commands to make both scripts
executable (so the system treats them as programs and not as text files) and then
create the static directory for saving photos:

chmod +x webpicam.py

chmod + takephoto.py

mkdir static

Open a terminal window on your Raspberry Pi and enter the ifconfig command to
determine the IP address of your Raspberry Pi system (Figure 4). Find the IP address
for the eth0 interface, labeled inet addr in Figure 4.
Now run the ./webpicam.py command to launch the app.
Go to another computer on your local network, open a browser, and enter the follow-
ing in the address bar of the browser window:

http://pi_IP_addr:8080

Rreplace pi_IP_addr with the IP address of your Raspberry Pi. For example:

http://10.0.0.119:8080

Press the Take Photo button, and you should see the taken photo (Figure 5). Refresh
the page if the photo doesn’t appear.

Webcam

39

and run the following command in the
terminal window:

python takephoto.py

The preceding command tells Python to
execute the script you just saved to the
file takephoto.py. The script just
takes a picture and saves the image to
the filename photo.jpg. You might be
wondering how this script is any differ-
ent from simply taking a picture with
the raspistill command, and in this
case, it is really the same. However, you
get lots of extra powers once you put
the command in a Python script. For
example, if the image you wanted to
capture required lots of additional op-
tions for light and color settings, putting
the command in a script could reduce
the amount of typing and eliminate the
chance for a typing error.

When you learn more about Python,
you could add additional input, such as
triggering the photo with a motion de-
tector or a conditional loop that would
take a photo only under predefined
conditions.

See the box titled “Webcam” for a look
at how to turn your Rasp Pi camera into
a web camera that you can operate from
another computer on your home net-
work. (BTW: You’ll need to know a little
about computer networking to try this
experiment!)

Graphic Interface
Sometimes it’s more convenient to oper-
ate the camera using a graphical inter-
face instead of running commands in a
terminal window. The RPICameraGUI
[3] application is a graphical web appli-
cation for the Raspberry Pi camera.

To install RPICameraGUI, you need to
add a couple of components using the
sudo apt‑get install ‑y python‑wx‑
tools git‑core command. Next, run
the git clone https://github.com/
sixbacon/RPICameraGUI.git com-
mand to fetch the application. Switch to
the RPICameraGUI directory and run the
application with the command ./RPI‑
CameraGUI.py.

This simple application (Figure 6)
makes it easier to operate the camera,
but here is the clever part: You can ac-
cess and control RPICameraGUI from
another computer. How can this be use-

Python elsewhere in this issue.) The lat-
est version of Raspbian comes with a
Python module that can communicate
and control the camera, so if you have a
little programming knowledge, you can
start writing Python scripts right away.

A brief look at how to integrate the
camera into Python will help you get
started. To begin, create a simple script
that takes a photo. On the Raspberry Pi,
use a text editor to create a new text file,
and enter the code below into it:

#!/usr/bin/python
import picamera
camera = picamera.PiCamera()
camera.capture('photo.jpg')

Save the file as takephoto.py, After
you save the file, open the terminal,

FIGURE 4: Use the ifconfig command to determine the IP address for your
Rasp Pi.

FIGURE 5: You can use a simple web app to control the camera module with a
browser.

40 Raspberry Pi Adventures

Pi Camera

ful, you might ask? Imagine that you
want to take photos of birds in your gar-
den. You can place the Raspberry Pi
with the camera module connected to it
next to a bird feeder and then use your
laptop to control and trigger the camera
remotely.

To get started, you need to enable SSH
on the Raspberry Pi. Run the sudo
raspi‑config command, switch to the
Advanced Options section, choose SSH,
and select Enable. After you reboot the
Raspberry Pi, you should be able to con-
nect to it from another Linux machine
using the command ssh ‑X pi@rasp‑
berrypi. (Don’t forget to replace rasp‑
berrypi with the Raspberry Pi’s IP ad-
dress.) Switch to the RPICameraGUI di-
rectory, launch the application using the
./RPICameraGUI.py command, and
you should see the camera GUI as if it
were running on your machine.

Final Word
The camera module is a fantastic addi-
tion to your Raspberry Pi. After you’ve
mastered the basics of using and con-
trolling the camera, you can use Python
to build whatever great camera-based
application you can think of. Good luck,
and happy coding! X

Info
[1]	� Camera Module Setup:

www.​raspberrypi.​org/​help/​
camera‑module‑setup

[2]	� Timelapse Calculator: www.​photopills.​
com/​calculators/​timelapse

[3]	� RPICameraGUI:
github.​com/​sixbacon/​RPICameraGUI

FIGURE 6: Controlling the camera using RPICameraGUI.

01 �#!/usr/bin/python

02 �import picamera

03 �camera = picamera.PiCamera()

04 �camera.hflip = True

05 �camera.vflip = True

06 �camera.capture('static/photo.jpg')

LISTING 2: Helper Script for the Web
Camera App

01 �#!/usr/bin/python

02 �

03 �from bottle import post, route, request, static_file, run

04 �import os

05 �

06 �@route('/')

07 �@route('/', method='POST')

08 �def index():

09 � if (request.POST.get("takephoto")):

10 � os.system("/home/pi/takephoto.py")

11 � re�turn '<h1>Hello There!</h1>
<p></p><p>
<form method="POST" action="/"><input name="takephoto"
value="Take Photo" type="submit" /></form></p>'

12 �

13 �@route('/static/:path#.+#', name='static')

14 �def static(path):

15 � return static_file(path, root='static')

16 �

17 �run(host="0.0.0.0",port=8080, debug=True, reloader=True)

LISTING 1: Simple Web Camera App

41

http://www.raspberrypi.org/help/camera-module-setup
http://www.raspberrypi.org/help/camera-module-setup
http://www.photopills.com/calculators/timelapse
http://www.photopills.com/calculators/timelapse

Start programming with turtle graphics.
 By Paul C. Brown

Turtle graphics is a graphic notation
system that was devel-

oped in the 1960s to work with an ear-
lier generation of computers. The Turtle
graphics system is easy to visualize, and,
perhaps more importantly, it is easy to
describe in a way that even a simple
computer can implement.

The clarity and simplicity of turtle
graphics makes it an ideal starting point
for understanding computer program-
ming. This article will help you take your
first steps. You’ll learn how to direct the
computer using commands and how to as-
semble those commands into simple pro-

grams that draw pictures on the screen or
on a printed page.

Turtle Concepts
Turtle graphics uses a moving cursor
called the turtle. Imagine this turtle is
holding a pen. You can make the turtle
move by telling it how many steps to
take. You can also tell the turtle to
change direction. If the turtle puts the
pen down, it draws a line as it walks. If
the turtle holds the pen up, it simply
moves to a new position and doesn’t
draw as it walks. You can create a won-

E n t e r t h e T u r t l e
Programming Turtle Graphics with Turtle Art

ENTER THE TURTLE

FIGURE 1: Turtle Art on start up: (1) Menu bar, (2) palettes, (3) workspace/​drawing area,
(4) block, (5) hide palette, (6) clear workspace, (7) run program fast, (8) run

program slow, (9) help me look for mistakes in my program (debug). Le
ad

 Im
ag

es
 ©

 A
le

xa
nd

r
A

le
ab

ie
v,

 1
23

R
F.

co
m

Turtle Art

42 Raspberry Pi Adventures

\|/..---
/|\o

\|
/

. . --
-

/|
\

drous range of pictures using these sim-
ple concepts. The turtle can draw almost
anything if you give it a series of com-
mands that specify:
•	Direction
•	Number of steps
•	Whether to draw while walking or

move to the new position without
drawing.

With a few enhancements, like pen
color, line width, and some special pro-
gramming techniques, the little turtle
becomes a formidable artist.

Turtle Art is an easy turtle graphics
program that runs on the Raspberry Pi.
Because Turtle Art is not usually pre-in-
stalled on your Raspberry Pi, you need
to grab it using the command line. Con-
nect your Pi to the Internet, open a ter-
minal window, and type:

sudo apt‑get install turtleart

You might have to answer Y to install the
program, but, once it’s done and installed,
you’ll find the Turtle Art app in the Educa-
tion section of your menu. Click on the
icon and the program will start.

Look at the picture in Figure 1: Across
the top of the screen is a menu bar (1).
Below that you have a dark bar that con-
tains the Palettes (2) on the left. The Pal-
ettes have tabs with different blocks and
tiles in them. Blocks look like this:

and they do things. Tiles look like the
following:

and they contain values you can pass to
the blocks. If you want to change the
color of the pen to blue, you use a blue
tile with the set color block. I will
show plenty of examples of how to do
this in a minute.

Click on the tab with the turtle icon
(next to the (2) in the picture), and the
first tab, Turtle, will open. It has
blocks you can use to move and do
stuff with the turtle. So, to get started,
drag a forward block out onto the
workspace:

It will come with a purple value tile
that says 100. If you click on the
block, the turtle will move forward 100
steps. Click inside the purple tile and a
black square will appear. Use your
keyboard to change the value, to 50,
for example. Click on the green forward
block again, and you’ll see how the
turtle moves forward half of what it
did before.

To clear the screen after each of your
experiments, click on the eraser icon (6)
in the upper right-hand corner of your
screen.

You can make the turtle change direc-
tion two ways: you can use left or
right blocks, or you can use set
heading. These options work in differ-
ent ways. Drag out

E n t e r t h e T u r t l e

4343

each color has a number next to it? Red
is 0, orange is 10, yellow is 20, and so
on. You can use numbers in between to
get slightly different colors. Then, you
can also combine the colors into shades.
Take out the set shade block, change
the value tile to 20, and start drawing.

The color of the pen will be darker
than normal. Change the number in the
tile to 70 and draw a line again. The
color of the pen will be much lighter. In

and click on it. You’ll see the turtle
turn and face right (the 90 refers to
“90 degrees” – the angle the turtle has
to turn). Click on it again and the turtle
will turn and face downwards, because
turning right 90 degrees twice makes
you turn around and face in the oppo-
site direction.

The set heading block works like a
compass – look at Figure 2. Here, 0 and
360 indicate north or straight up, 90 is
east or to the left, 180 is south or down,
and 270 is west or to the right. Bring out
a set heading block and set its purple
value tile to 90:

Then, click the block, and the turtle
will turn to look straight right, regard-
less of which direction it was looking in
before.

The second tab, Pen, lets you do things
with the pen that the turtle is carrying.
You can make the turtle pull the pen up,
so it does not draw (and then you can
make the turtle push the pen down
when you want it to start drawing
again). You can also change the pen’s
color and size and make other changes
to the way the turtle draws lines.

It may look like you have just a few
colors to pick from in the Colors tab, but
really there are many more. See how

FIGURE 2: The set heading block acts
like a compass.

FIGURE 3: You have plenty of colors to choose from.

44 Raspberry Pi Adventures

Turtle Art

Figure 3, you can see some of the colors
you can draw with.

The Numbers tab is all about math and
numbers. You can use Turtle Art as a cal-
culator! Drag out a division (/) block
and do this:

Then, click on the / block. An orange
bar will pop up at the bottom of the win-
dow with the result: 1.625.

The Flow tab is important, because it
contains blocks that allow you to create
loops. A loop lets you to do something
again and again. You can use a loop to
draw a square. Squares have four sides
and four corners, right? You want to
make you turtle move forward, say, 100
steps, turn right 90 degrees (to make the
corner), and do that four times. In turtle
art, you do that like this:

Pretty Pentagons
Now that you’ve drawn a square, why
not try a pentagon? First, though, I’m
going to let you in on a secret.

Look at the picture in Figure 2 again.
See at the top where it says 0 and 360? If
you turn a full circle and get back to fac-
ing the way you were originally, you
have to turn 360 degrees. Now, look at
the degrees you have to use to make a
turn in a square: 90. 90 is 360 / 4. And 4
is the number of sides or angles you
have in a square.

The interesting thing is this rule ap-
plies to all polygons, so, to work out the
angle your turtle has to turn in a penta-
gon, you divide 360 by 5, in a hexagon
you divide 360 by 6, and so on. That
means your code for drawing a pentagon
in Turtle Art could look like what you
see in Listing 1.

Notice you should start using the
start block at the beginning of your
code. This block tells Turtle Art where
your program starts. If you press the pic-
ture of the hare (7), the code that begins
with start is what will get run (if you
have two pieces of code that begin with

start, pressing the hare will execute
the piece of code you wrote first).

That’s one way to draw a pentagon,
but you can also draw one using the
blocks in the Blocks tab (Table 1).

Action Packed
You can make the turtle draw any regu-
lar polygon you want, and you only ever
have to change one tile. A box in Turtle
Art is known as a variable in other pro-
gramming languages. In the Blocks tab,
you have all the bits and pieces to build
a box.

Drag out the store in block and
change it to look like this:

This means you can now use the value
inside a box you just called sides wher-
ever you need to tell Turtle Art how
many sides your polygon has.

In your program, your code would
look like what you can see in Listing 2.
It may look like more work to use a box,
but think about it: Before, if you wanted
to draw a different polygon, say a hexa-
gon, you had to change your program in
two places. Now you only have to
change the program in one place. That’s
half the work!

And, it gets better. Suppose you want
to draw all the polygons from a triangle
up to an octagon. Before, you had to
write six programs, but with the help of
boxes, an action, and a repeat loop,
you only need one.

An action in Turtle Art is what other
languages call a function or module. You
give it a name (you’re going to call your
first action polygon), and it contains
some blocks you’re going to need over
and over. When you need to draw a
polygon in your program, instead of
having to write all the code out each
time, you can insert one simple action
block with the name of your action
(polygon) and, then your code gets run!

To make this work, the first step is to
move the code that draws the polygon
into your action. Drag from the Blocks
tab a start action block and move
your blocks from the program shown in
Listing 2 to under the start action
block. Your code should look like what
is shown in Listing 3.

LISTING 1: A simple
Pentagon

LISTING 2: A Smarter
Pentagon

LISTING 3: Action Polygon

45

That’s six polygons. Each time the pro-
gram runs it does two things: First, it
calls the polygon action you made be-
fore. Second, it adds 1 to sides.

The first time the program runs
through the loop, sides contains 3 and
so polygon draws a triangle. Then, you
add 1 to sides. The second time the
program runs through the loop, sides
contains 4, and so polygon draws a
square. Then, you add 1 to sides and,
well, you get the rest. The final picture
looks like what you can see in Figure 4.

Stars and Spirals
Now you’re ready to draw a star in a
pentagon. The code in Listing 5 makes
use of the famous irrational number φ
(phi). See the box titled “More on Phi”
for additional information on this fa-
mous number, which has many uses in
mathematics and design. All the code
you will need for teaching the turtle to
draw a star in a pentagon is shown in
Listing 5.

See how the main program consists of
amazingly simple actions! The first thing
you do is clean up the workspace and
set the turtle looking to the left. Then,

The next step is to set up the main
body of the code. My version is in List-
ing 4.

You start out by cleaning up the work
area. Then, you set the number of sides
for the first polygon. The first polygon
you want is a triangle, so you would put
3 into sides.

Then you have a repeat loop that will
run six times, because you want to draw
a triangle, a square, a pentagon, a hexa-
gon, a heptagon, and an octagon…

Listing 4: Many Polygons Program

FIGURE 4: Six polygons, from a triangle all the way up to an octagon.

46 Raspberry Pi Adventures

Turtle Art

Name Picture Contains

Turtle Commands that control the turtle

Pen Commands that control the pen

Colors Pen colors

Numbers Numeric operations

Flow Loops and conditions

Blocks Variable and action blocks

Extra Extra options

Portfolio Presentation templates

Trashcan Erased blocks and code

TABLE 1: All the Tabs in the Palette

47

facing the right way, you have to turn
the turtle to the right by 180 degrees
divided by the number of sides (i.e.,
[360/2]/[no. of sides]). Remember how
the angles of a polygon measure 360 de-
grees divided by the number of sides?
Well, the angles of a star measure 720
degrees divided by the number of sides
(i.e., [360 x 2]/[no. of sides]).

you set up some values (see the values
action a bit below), such as Phi, the size
of your pentagon and the number of
sides. It’s a pentagon, so the number of
sides is going to be five. Then, you draw
a polygon.

Finally, you draw a star inside the pen-
tagon. The star action is a tiny bit more
complicated than drawing a polygon,
but not much. After changing the color
and size of the pen, to place the turtle LISTING 6: The Fibonacci Spiral

LISTING 5: A Phitagon

\|/..---
/|\o\

|/ . . --
-

/|
\

48 Raspberry Pi Adventures

Turtle Art

Also remember that the length of a
star’s sides are equal to the length of the
side of the pentagon multiplied by φ, so
you multiply by φ in the repeat loop.

Run the program with the start
block, and the turtle will draw you a star
enclosed in a pentagon.

There are two more pictures I would
like to share that are associated with φ
and Fibonacci numbers. For example,
take a look at what happens if you draw
some squares with sides the same as the
numbers in a Fibonacci series.

If you draw the squares – not side by
side – but around each other, as shown
in Figure 5, you can see a kind of spiral
emerge. Let me add in a quarter of a cir-
cle joining the first corner the turtle
draws in each square with its third cor-
ner. See Figure 6. Listing 6 shows the
turtle code for the spiral.

Conclusion
You can use Turtle Art to draw square
houses, with square windows, a triangle
roof, and a circle sun. Use your imagina-
tion to create your own projects using
the turtle graphics. This adventure into
pentagons, stars, and visual representa-
tions of Phi offers a lesson in using the
turtle as a powerful programming tool.

If you want to know more about φ, Fi-
bonacci, or how to draw more things
using Turtle Art, write to me! My email
address is p_brown@gmx.com. I’d also
love to see your pictures made with Tur-
tle Art! X

Info
[1]	� Golden ratio: https://en.wikipedia.org/

wiki/Golden_ratio

FIGURE 5: Drawing squares using the numbers in a Fibonacci series.

FIGURE 6: A Fibonacci spiral.

50 Raspberry Pi Adventures

Turtle Art

https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Golden_ratio

Some people like π; others like e. Me? I’m a
1.618033988749894848204586834 guy. For me φ (or phi –
rhymes with “fly”) is the most beautiful number in the
world.
Phi starts with 1.618033988749894848204586834… , and it
goes on and on and on to infinity, never repeating itself.
Phi is an irrational number, like the famous π (pi), which
lends its name to the nano-computer Raspberry Pi. Irratio-
nal numbers contain an infinite number of digits in all
possible combinations. You could, for example, find your
age, your birthday, and your phone number all bunched
together somewhere in the infinite ream of digits if you
looked hard and long enough.
Phi isn’t just beautiful because it is infinite. Why is it awe-
some? Because of the Fibonacci sequence, pinecones, and
pentagons.
Allow me to explain: This…

1 1 2 3 5 8 13 21 34 55 89 ...

is the start of the Fibonacci Sequence. In the Fibonacci Se-
quence, you start with 1 and 1, and then you calculate the
next number in the list by adding up the two that come
before it. So, you take the first two numbers, 1 and 1, add
them together and get the third number, 2. Then, you add
the second and third numbers, 1 and 2, and you get the
fourth number, 3. And so on.
What would come after 89? Add 55 (the second to last
number) and 89 (the last number) and you get
55+89=144.
Now, take any number in the Fibonacci sequence and di-
vide it by the number before it (you can use a calculator):

1/1 = 1

2/1 = 2

3/2 = 1.5

5/3 = 1.666666...

8/5 = 1.6

13/8 = 1.625

21/13 = 1.615384...

34/12 = 1.619047...

55/34 = 1.617647...

89/55 = 1.618181...

144/89 = 1.617977

As you move further and further
along the sequence, the result of the
divisions get closer and closer to φ!
Let’s look at pine cones now. Find a
cone like the one shown in Figure 7.
If it is closed, all the better. If you
count the scales around each ring,
starting at the tip (counting the tip
as 1) and moving down, you’ll usu-

ally find that each ring contains a number of scales that is
in the Fibonacci sequence: 3, 5, 8, … Not always, mind:
sometimes it will be the Fibonacci sequence+1(2, 4, 6,
9, …). If you look at the seeds in the center of the sun-
flower, you’ll see the same thing.
You’ll also see how the seeds form a spiral radiating from
the center of the sunflower. A pine cone also has spirals of
scales radiating from the top and bottom.
Suppose I ask you to draw a pentagon like the one shown
Figure 8. Each side has to measure 100 steps. (I want a re-
ally big pentagon!) Now I give you a big bucket of red
paint and tell you to join all the corners on the inside to
create a star, again, just like in the picture. Do you know
how long each of the red lines has to measure? Well, if
each black side measures 100 steps, each red line mea-
sures 161.8033988749894848204586834 steps… . a red line
measures whatever a side measures multiplied by φ (in
this case, 100 steps x φ).
See that blue line? It measures exactly whatever a side
measures divided by φ (100 steps/φ). All of this comes in
really handy when drawing pentagons and stars!

More on Phi

FIGURE 7: Pine cones knew about Fibonacci numbers before
you did!

FIGURE 8: Drawing pentagons and stars requires knowing about φ.

51

Scratch makes learning to
program fun and easy. This

tutorial starts with some
basics and moves into

more advanced uses with
simple examples. You’ll

learn how to to draw,
animate, and create a

shark attack game.
 By Michael Badger

Scratch is a free programming lan-
guage that’s designed to teach

you how to program by creating sto-
ries, animations, multimedia projects,
and games. The version of Scratch
that ships with the Raspberry Pi will
allow you to do all of these things and
more.

One of the ways Scratch helps you
quickly see your ideas on the page is
through a collection of color-coded
blocks that you stack together to create
the instructions that tells your game,
story, or animation exactly what to do. If
the blocks snap together, they will run,
allowing you to rapidly and successfully
create programs. The visual drag-and-
drop nature of Scratch means anyone
can create with Scratch. First, I’ll take a
quick look at the Scratch interface.

Setting Up Scratch
Scratch is a default application on the
Raspberry Pi. You can open the program
by going to the Menu | Programming |
Scratch. A window resembling Figure 1
will open.

The interface is horizontally divided
into three primary sections. The left
third of the interface contains the
blocks, organized by category. The
blocks each contain a command, such
as move (10) steps. I like to think of
the categories of blocks (motion,
looks, sound, pen, control, sensing,
operators, and variables) as palettes
because they are comparable to a
painter’s palette of colors. You can mix
the colorful blocks together to form
your art.

Getting Started with
Scratch Programming

Le
ad

 Im
ag

e
©

A
le

xa
nd

r
A

le
ab

ie
v,

 1
23

R
F.

co
m

52 Raspberry Pi Adventures

Scratch

The middle third of the interface con-
tains tabs with specific information re-
lated to the project. The most common
area you will work with is the Scripts
area, which is a tab. The Scripts area
will be the primary workspace where
you stack the blocks to control your
characters, called sprites in Scratch. You
can see in Figure 1 that there are addi-
tional tabs for costumes and sounds, in
addition to some sprite-specific informa-
tion (name, rotation, positioning). This
area describes everything you need to
know about the selected sprite.

In the right third of the interface is the
stage and the list of sprites. In Figure 1,
you see two sprites (the cat and a block
figure) on the main stage. The stage is
where each of the characters play out
their scripts. Directly below the stage is
the cast of sprites in each project, and as
you see, projects can contain much more
than just sprites.

As I describe a few simple exercises, I
will fill in more details. This short tour
provides the necessary introduction for
you to follow along with the sample
scripts and should make it easy for you
to imagine yourself learning to program
with Scratch.

Basics – Drawing
Every time you create a new project, the
Scratch Cat will be included, but you’re
under no obligation to keep the cat in
your project. There are several ways to
get characters into your project. You can
draw, import, or edit existing sprites.

The first feature I want to explore with
you is the drawing capabilities that are
built-into Scratch. Drawing is accom-
plished in the Paint Editor, and it al-
lows you to create characters, scenes,
or art without worrying about pro-
gramming. After you draw a character,
I will show you how to animate it.

To open the Paint Editor, click the
Paint new sprite icon found between the
stage and sprite list. It’s the icon that
has a star and paint brush; as you move
your mouse over the icon, a tool tip will
display with the name of the tool.

Figure 2 shows the Paint Editor with
my hand-drawn sprite. If you’ve used
other graphics editing programs, such
as Gimp or Photoshop, these tools will
likely be familiar. Scratch provides a
very small subset of the tools available

FIGURE 1: The Scratch interface.

FIGURE 2: Scratch provides its own Paint Editor to allow you to create your own
sprites and backgrounds.

53

take 10 steps backward. In Scratch, the
10 steps backward can be represented
with a negative number.

The other subtle feature used in this ex-
ercise will be of great benefit to you as
you create bigger and more complex proj-
ects. You were able to make the sprite fol-
low the command on the block just by
clicking on the block, and the changes
were immediately reflected in the sprite.
This allows you to test an individual
block or an entire script by clicking on
the stack of blocks to test your program-
ming without running the entire project.

Now that you can move your sprite
forward and backward, I’ll show how to
create your first animation using cos-
tumes. With your sprite selected, click
the Costumes tab to display a thumbnail
view of your sprite’s costumes. You
should have one thumbnail for the sprite
you created.

Adding Costumes
Costumes are different appearances for a
sprite. It’s similar to when you put on a
costume (e.g., clothes for school, uni-
form, or pajamas), and you change how
you look. To create a second costume,
click the copy button next to first cos-
tume to duplicate it. Now click the edit
button for costume 2 to open the Paint
Editor, and you can change some ap-
pearances on the second costume.

You may choose to make any changes
you want, such as recoloring parts of the
costume or changing the positions of the
hands or feet. The animation I describe
will involve walking, so if you want to
try to show the second costume taking a
step, go for it. In my example, I clicked
the rotate clockwise button in the Paint
Editor to give my second costume a tilt.
The goal is to have a second costume
that’s different enough from the first
costume so you can see the animation.
Realism is not required.

After you create your second costume,
build the script shown in Figure 3. You’ll
find the when green flag clicked,
wait () secs, and forever blocks in
the Control palette. The next costume
blocks are found in Looks.

When you click on the green flag, ob-
serve the animation. As the sprite moves
across the stage, you should see your
animation play out. You’ll immediately
notice a problem, however. When the

in other applications, but it will be
sufficient.

I drew my sprite using the rectangle
tool and the paintbrush. Both of these
tools let you select options that change
how the paintbrush or rectangle draw.
For example, both provide an option to
select a color. For the paintbrush, you
can select a brush size to draw in bigger
or smaller strokes. For the rectangle tool,
you can select whether or not you draw
a solid rectangle or a transparent rectan-
gle with a border. Several of the other
tools work the same way.

If you make a mistake, there is an undo
option, and if you want to start over, you
can use clear. Take a moment and experi-
ment with the drawing tools to create
your own sprite. Browse through the
other options in the Paint Editor.

After you click OK to save your sprite
and exit the Paint Editor, you may find
that your character is too big for the
stage. Directly above the stage is a
shrink sprite button. When you click
shrink sprite, the mouse cursor will dis-
play as four inward-pointing arrows. Po-
sition the cursor over the sprite and
click. Each click will reduce the size of
the sprite.

Simple Movement
Now, you can make your character move
across the screen, but before you look at
a script, go to the Motion palette and
drag the move (10) steps block into
the scripts area for your new sprite.
Then, click on the block several times.
Did you see your character move?

The sprite is moving a relatively small
number of “steps” each time you click
the block, which is why you may need
to click the block several times to see
any movement. The steps represented in
the move (10) steps block are pixels,
so with each move command, the sprite
moves 10 pixels. In Scratch, the stage is
480 pixels wide and 360 pixels tall.

Now, reverse the movement of your
sprite by changing the 10 to a negative
10 (-10). Click the block several times
and observe that the sprite moves to the
left. Take a moment to see what happens
when you make the number of steps
larger or smaller.

Just like in real life, if you took 10
steps forward and you wanted to return
to where you came from, you would

FIGURE 3: A simple script to
move the sprite

around the stage.

Scratch

54 Raspberry Pi Adventures

sprite reaches the edge of the stage, it
turns around and goes in the opposite
direction, courtesy of the if on edge,
bounce block; however, when the sprite
bounces off the right side of the stage, it
flips upside down.

To fix the rotation of the sprite, look in
the sprite information panel above the
Scripts tab for three small buttons that af-
fect rotation. Click the Only face left-right
button in the middle, and the sprite will
stop walking upside down.

You have a lot of control over how this
animation appears by changing the val-
ues in the move and wait blocks. In my
script, I tell the sprite to wait .05 sec-
onds after switching to the next cos-
tume. This slows down the animation
because the next block in the stack does
not run until the current block com-
pletes its command. If you take the wait
block out of the script, you’ll notice that
the animation becomes very fast.

The wait () secs block shows us
something important about the order in
which blocks are run in Scratch. When
you write a script in Scratch, the com-
mands run in the order you stack the
blocks. However, it is possible to have
multiple scripts running at the same
time for a sprite.

By now, you’ve noticed that this ani-
mation doesn’t stop. That’s because
the animation is inside the forever
block. A sequence of blocks that con-
tinually runs over and over again is
called a loop.

Before I move on, the when green
flag clicked block warrants some dis-
cussion. Using this block is a common
way to start your program in Scratch,
and my simple script is demonstrating
two fundamental uses. As you’ve seen,
the animation is started when the user
clicks the green flag in Scratch.

Using the green flag click is a great
way to set initial values at the start of
your project. In Figure 3, I’m ensuring
that costume1 is selected, because you
may notice if you start and stop (using
the stop sign) the script, the program
may end on costume2. This way, I en-
sure I start with the first costume.

You may want to specifically set
many things at the start of a game,
story, or animation, including resetting
scores to zero, positioning a sprite on
the stage, showing/​hiding sprites,
clearing graphic effects, or clearing the
pen drawings.

Advanced
Now, I’ll show you the scripts for a two-
sprite “Shark Attack” game. The player
has 10 seconds to avoid being “eaten” by
the shark. Each time the shark touches
the player, the score increases, meaning
the player’s objective is to keep the
sharks’ score low. How low can you
score? Can you get zero?

Figure 4 shows the scripts for the
player, and Figure 5 shows the script for
the shark. I’ll explain the important
parts of these scripts below.

Figure 6 shows the game play. You can
draw your sprites or use sprites from the
Scratch library. If you use the Choose
new sprite from the file option for a new
sprite, then you can browse the list of
available sprites in Scratch’s library. In

FIGURE 4: The player scripts in a game of
Shark Attack.

FIGURE 5: The shark scripts in a game of
Shark Attack. FIGURE 6: A scene showing the shark

attacking the player.

55

sprites by name. All the available things
you can sense are contained in the drop-
down menu of the block’s value field.
Identifying other sprites is relatively
easy when you only have two sprites,
but what if you have a project with four,
a dozen, or more sprites? It helps to give
your sprites meaningful names, such as
player and shark, so you can clearly
identify them. To rename a sprite, select
it from the list of sprites and then type a
new name in the sprite properties field
above the scripts area.

When the shark touches the player,
the change (score) by (1) block
adds one to the score. By the way, when
you create a variable, that variable will
report its value on the stage. You can
right-click on this stage reporter to hide
or change the display.

The variable is useful because you
would expect the value of score to
change throughout the course of the
game, but you only have to look at one
variable to get the current value –
score, in this case. Variables can con-
tain any number or text value you may
want to use in your game.

The script in Figure 5 uses one of
Scratch’s built-in variables (you don’t have
to create it) called time. This is the control
that ends the game. If more than 10 sec-
onds elapse, the game ends. Because the
time value continually counts, the script
initializes the timer to 0 using the reset
timer block at the start of the game.

The way the script evaluates time’s
value is with a greater than compari-
son block, which is available in the Op-
erators palette.

Broadcasts
One of the most important Scratch fea-
tures you can learn is broadcasts. Broad-
casts enable one sprite to send a mes-
sage to all the other sprites, and it’s a
useful way to synchronize the events in
your project.

Figures 4 and 5 demonstrate broadcasts.
When the shark touches the player, it
broadcasts the message “player eaten.”
You create the broadcast message by click-
ing in the value area of the broadcast ()
block and choosing the new option.

Sending a broadcast is not enough to
cause anything else to happen in the
game. You need to tell each sprite to lis-
ten for the broadcast message. That’s

the Animals category, you will find sev-
eral sharks, for example.

Figure 4 shows the script to control the
player sprite’s movement. At the start of
the game, the script positions the player
in the middle of the screen. That’s the
go to x: (0) y: (0). Each location
on the stage can be identified by a set of
x and y coordinates. The x values range
from ‑240 to 240, and the y values range
from ‑180 to 180. For now, I’m only con-
cerned with identifying the middle of
the stage (x=0, y=0).

Next I use the go to
(mouse‑pointer) block to send the
player sprite to the location of the mouse
cursor. If you build and play this script,
you will see that the player will follow
the mouse, meaning that moving the
mouse moves the player.

Of the two shark scripts in Figure 5,
the script that sets the shark’s costume
and movement should be familiar now.
The other script, however, introduces
several new ideas.

I’ll start with the set score to (0)
block. Score is a variable I created to
track when the shark touches the player.
To create a variable in your game, select
the shark sprite and then click on the
Variable palette and then Make new
variable. You will be prompted to enter a
variable name. You will also have to
choose whether or not you should make
the variable accessible to this sprite only
or for all sprites. If you make the score
variable only available to the shark
sprite, then the player sprite will not be
able to see or use the score directly. For
this demo, either option will work.

Next, I’ll look at the sensing block
touching (player)? that is used with
the if () block. The if block is com-
monly referred to as a conditional state-
ment, meaning the script only runs the
blocks inside the if statement when the
statement is true.

In Figure 5, the condition I’m checking
is whether or not the shark is touching
the player. Think about all the things you
may do in a day that are determined by a
simple check first. Before crossing a busy
street, for example, you have to check the
crosswalk signal for the “walk” sign.

Look at the values in the touching ()
and point to () blocks. These blocks
are capable of sensing other sprites and
features in Scratch, such as the edge of
the stage, the mouse pointer, and other

Scratch

56 Raspberry Pi Adventures56 Raspberry Pi Adventures

what’s happening in Figure 4; the player
is waiting to receive the “player eaten”
message, and when it receives the mes-
sage, it says “Ouch.” Of course, you can
have multiple broadcast messages within
your project, so it makes sense to choose
meaningful names. In fact, anytime you
name something, make the name mean-
ingful and identifiable. It’s similar to
naming people Cameron, Christie, and
Wally instead of boy1, girl1, and boy2.

What about the stage? I didn’t spend
any time on the stage, but it’s important
to know that the stage can have its own
scripts and backgrounds, as well.
Scratch also includes a library of back-
grounds that you can import into the
project via the Backgrounds tab when
the stage is selected in the sprite list.

Exercises
Create a slideshow of your favorite im-
ages. Not only does Scratch allow you to
draw your own sprites and backgrounds,
it also lets you import your own image
files for use in the project.

Draw a square by moving and turning
the sprite around the stage. Check out
the pen down, pen up, and clear
blocks in the Pen palette to trace the
steps of the sprite. Can you draw other
shapes and designs using different val-
ues that move and turn blocks?

Try using broadcast messages to ani-
mate and tell a story between two or

more sprites. Incorporate backgrounds
into the project.

You can build off the Shark Attack
game to make it harder. Try making the
sharks go faster after a certain amount
of time passes or try adding a second
shark. You could “level up,” so that if
the player is able to avoid being eaten
for a few seconds, you give the player an
extra health point that can be deducted
from the shark’s final score.

The installed version of Scratch cannot
interact with the general purpose input/​
output (GPIO) pins on the Raspberry Pi.
For that, you can download a third-party
version of Scratch called ScratchGPIO
from Cymplecy [1].

You can use ScratchGPIO to create spe-
cific broadcast messages and variables to
control the input and output of the GPIO
pins on the Pi. GPIO support can be use-
ful for demonstrating circuits and incor-
porating lights, motors, and sensors into
your Scratch project. Happy Scratchin’. X

Info
[1]	� Cymplecy: http://​simplesi.​net/​

scratchgpio/

The Author
Michael Badger authored the Scratch (1.4
and 2.0) Beginner’s Guide series from
Packt Publishing. Learn more and get this
project source at scratchguide.com.

http://simplesi.net/scratchgpio/
http://simplesi.net/scratchgpio/

Now that you’ve used Turtle
Art and Scratch, we’ll show

you how to use the higher
level programming

language Python. However,
this Python doesn’t bite.

 By Scott Sumner

Python is an easy-to-read programming
language that uses indented

lines to map blocks of code visually. You
can enter a line of code in the terminal
while running the Python “interpreter”
and receive results immediately, or you
can collect a number of lines of code in
a file and run them as a program. Rasp-
bian comes with Python version 2.7.9
already installed.

For all of the examples in this article,
you can use Raspbian’s text editor to

enter the programs. You’ll find it under
the Accessories submenu (Figure 1). To
enter or run programs, type any code in
text that appears in this font, or any
code in a listing box, exactly as it appears.
To save the program, use File | Save.

In the left sidebar of the Save dialog,
the pi folder (with a house icon) is the
home directory, where you’ll save your
programs. Figure 2 shows how your first
code file will look when you finish typ-
ing and saving it.

Taming the
 Snake

Python Programming Basics

Le
ad

 Im
ag

es
 ©

 A
le

xa
nd

r
A

le
ab

ie
v,

 1
23

R
F.

co
m

Fi

gu
re

 L
in

e
D

ra
w

in
gs

 ©
 E

lie
se

 D
on

ha
rd

t

58 Raspberry Pi Adventures

Python Programming

Input and Output
Any computer language has to have
ways to get information in and put it
back out again. The traditional “Hello
World” computer program is an easy
way to demonstrate the basics of a lan-
guage. Python uses the print command
to create output:

print "Hello World!"

Once that’s saved to a text file named
hello.py, click in the top panel on the
terminal icon (Figure 3). The terminal
allows you to send commands directly to
the Linux operating system instead of
with a mouse in a graphical user inter-
face. To run your program, type:

python hello.py

Python should greet the world by saying
Hello World! (Figure 4).

Now that you have your first program,
you can expand it a bit by storing the
words of the greeting in variables before
outputing the message:

greeting = "Hello"
who = "World"
print greeting + " " + who + "!"

To try it, type this listing in the text edi-
tor and save it to the file hello2.py. To
run it, type

python hello2.py

in the terminal. When this program
runs, you still see Hello World! in the
terminal. Behind the scenes, though,
things are happening a little differently.

FIGURE 1: In Raspbian, installed programs are found in the main Menu in the upper left
corner of the desktop.

59

named greeting, and I put the word
Hello in it (Figure 5). In my bucket
called who, I put the word World.

The print statement knows how to
output variables, as well. When I give
print a variable name, it looks in the
bucket to see what’s there and shows
me. I can put multiple pieces of a line of
output together by using plus signs.

INPUT, NEED INPUT!
So far, I’ve only printed words to the
screen – output. Now I’m going to show
you how to input information to your
program so your Raspberry Pi can greet
you by name. First, save the lines in List-
ing 1 to the file hello3.py. To run it,
type python hello3.py in the terminal.

In the second line, your program asks
you a question, which shows up in the
terminal and waits for you to type and
hit the Enter key. Whatever you type, in-
cluding spaces, goes into the variable
name. Once you press Enter, the program
will greet you. Now you have a simple
program that takes input of your choice
(your name, here) and finishes with a
customized greeting.

Loops
Often in programming it is useful to re-
peat code over and over again. Loops
allow Python to run the same set of in-

The first two lines define variables to
the left of the equals sign; here, I’ve
used greeting and who. Think of a vari-
able as a bucket that Python uses to
carry things around. I have a bucket

FIGURE 3: The icon that looks like a com-
puter monitor is the terminal.

FIGURE 4: Your first program on the Pi! FIGURE 5: A variable bucket. Each pro-
gram can have a lot of buckets

in which to carry values or text.

FIGURE 2: After you save your file, the name appears at the top of the window.

60 Raspberry Pi Adventures

Python Programming

structions many times; yet, you only
have to type it in once. Think of a loop
like a merry-go-round. Each repeat of
the loop is another trip around (Fig-
ure 6). A loop directs how many times to
go around, or sometimes its instructions
are to “keep riding until something spe-
cific happens.”

In this first example, I’ll use a loop to
count to 10. To begin, type the lines in
Listing 2 in the text editor; then, save
the file as count.py before running it
with python count.py in the terminal.

The first line in the example sets up
the loop:
•	for is the Python statement that

means “start a loop.”
•	i is a variable that keeps track of how

many times the loop has run.
•	in range (10) says to repeat the

loop 10 times.
•	The spaces after range and around

the 10 are optional. I add them to
make the code easier to read.
range(10) will work just as well.

Also notice that this line ends with a
colon (:). Whenever you see a colon in
Python, it signals the start of an in-
dented code block. As mentioned at the

top of this article, indentation, or white
space at the beginning of a line, indi-
cates a section of Python code that be-
longs together. It doesn’t matter how
many spaces or tabs you use, as long as
each line in the block has the same
amount of white space.

The print statement in the second
line should look familiar; I use it to
print the content of variable i. Because
the line is indented, Python recognizes
it as a part of the loop. You might won-
der what the + 1 does. At first, you
might think that Python will print 11,

greeting = "Hello"

name = raw_input ("What is your name? ")

print greeting + " " + name + "!"

LISTING 1: hello3.py

FIGURE 6: Each time the program goes around, it runs all the commands of the merry-go-round.

for i in range (10):

 print i + 1

print "I counted to 10!"

LISTING 2: count.py

61

happens when I run the code, so what’s
happening?

Remember that variables are like
buckets. Python knows the value of the
variable (what’s in the bucket), and it
also knows whether the bucket is carry-
ing characters or numbers. What is
stored in a variable determines its type
(as in “what type of variable is this?”).
Sets of characters are called strings. You
can recognize them because they are
surrounded by double quotes (“”).
Numbers, as used here, are integers and
are just common digits in this program.
Python treats strings and integers dif-
ferently, just as you do when you go to
Math classes.

Before, I used the plus sign to combine
pieces of text when I built my “Hello
World” message, but here, i represents
an integer, so Python treats the plus as a
math operation and instead adds 1 to
my integer variable. Why am I adding
one? Python (and most other languages)
start counting at 0. Without the + 1, my
program would count from 0 to 9.

Loops can function with strings too,
but the program will output each char-
acter individually. Try running the
spell.py program in Listing 3 with the
python spell.py terminal command.
You should see results similar to those in
Figure 7.

If Statements
Python uses the if statement to make a
decision by comparing two values. You de-
cide how they are compared and what
happens once the comparison is complete.
For example, imagine you’re at a carnival
and you want to go on a ride. However,

21, and so on to 101, as when combin-
ing words in the Hello World example
of Listing 1; however, that’s not what

FIGURE 8: In the ride.py program, I’m trying to decide whether 3 is greater than
5. Bummer! I only had enough money for the Ferris Wheel, until I

borrowed some cash.

name = raw_input ("What is your name? ")

print "You spell your name"

for char in name:

 print char

LISTING 3: spell.py

dollars = 3

if dollars > 5:

 print "Roller Coaster"

else:

 print "Ferris Wheel"

LISTING 4: ride.py

FIGURE 7: Working with strings in a loop.

62 Raspberry Pi Adventures

Python Programming

you might not have enough money to go
on the $5.00 daredevil ride, so you have to
look at your cash on hand and make a de-
cision. The ride.py program in Listing 4
shows how Python makes that decision
with an if statement.

You can change the number of dollars
on the first line to see which ride you
can afford (Figure 8). Line 2 works (and
reads) just as it looks: “If dollars is
greater than 5.” This statement is called
a condition. Python will then decide
whether the condition is True or False.
The indented code immediately after the

if is executed when it is
True. If an else is pres-
ent (line 4), the in-
dented lines that follow
are executed when the
condition is False.

Now I’ll expand the
program a bit so that it
asks how much money I
have (Listing 5); then,
the program can decide
what I can do depend-
ing on my input. Call
this program ride2.py
and run it with python
ride2.py. Run this
program a number of
times with different

input values to see the different re-
sponses. (See the “Using the Terminal”
box for an easy way to repeat the same
terminal command.)

You’ll probably recognize raw_input
on line 1 from an earlier program. The
raw_input function always returns a
string, even if you enter numbers; there-
fore, the first thing you have to do is
convert the string to a number with int
(line 2). A “5” will become 5, “27” will
become 27, and so on. However, “five”
will not become 5. Unfortunately Python
isn’t quite that smart.

01 �money = raw_input ("How much money do you have? ")
02 �dollars = int (money)
03 �if dollars < 3:
04 � print "You don't have enough money to do anything"
05 �elif dollars >= 20:
06 � print "Bring a friend"
07 �elif dollars >= 15:
08 � print "Lunch in the park"
09 �elif dollars >= 10:
10 � print "Roller Coaster + on‑ride photo"
11 �elif dollars >= 5:
12 � print "Roller Coaster"
13 �elif dollars >= 3:
14 � print "Ferris Wheel"

LISTING 5: ride2.py

If you want to run the same command over, you can press the Up arrow to get your
previous command back; then just press Enter to run it! The Up arrow works for an
entire history of commands. If you continue to press the Up arrow, you will see older
and older entries you made in the terminal. It will go all the way back to when you
started up your Pi.
The Pi can also help you remember file names. Type python ri then press the
Tab key twice. It will fill in the blanks or show you a list of choices. Then you
can type a few more characters and press Tab again, or just type in the missing
characters of the file name.

Using the Terminal

Expression Name Comparison

== Equals Is a the same as b ?

!= Not equal Is a different from b ?

< Less than Is a less than b ?

> Greater than Is a greater than b ?

<= Less than or equal to Is a less than or equal to b ?

>= Greater than or equal to Is a greater than or equal to b ?

Table 1: Python Expressions

64 Raspberry Pi Adventures

Python Programming

On lines 3 and 4, I set up variables the
program uses to determine the lowest
and highest number that Python can
choose. The guesses variable on line 5
keeps track of how many guesses have
been made during the game.

Line 6, starting with target = , works
the same way as the raw_input lines in

Line 3 makes the first comparison. If
the number of dollars is less than 3,
you get the message: You don’t have
enough money to do anything. On line 5
is a new command, elif (else if). If the
comparison on line 3 is False (i.e., you
have more than $3), then Python checks
the next unindented line. That’s line 5,
which checks for amounts of $20 or
more, in which case, you can bring a
friend. Once any condition is True, the
indented code directly under it runs, and
the if is complete. None of the other
conditions will be checked or run.

Notice that line 13 checks to see
whether dollars is greater than or
equal to 3; otherwise, you wouldn’t get
any output if you entered 3, because
none of the other elif statements
would apply. Table 1 shows other Py-
thon expressions you can use for com-
parisons in if statements. How could
you change ride2.py to check for ex-
actly the right amount of money?

Think of sets of if/elif statements as
a set of doors in a school hallway. Each
door posts its rule, which you can evalu-
ate to determine whether it’s True or
False. Once you find a door that you can
enter, you’ve found your class and don’t
have to check any other rules. As shown
in Figure 9, if I’ve washed my hands, I
can go in the first door; if not, I move on
to the next one. Have I read chapter 3? If
so, I can enter here; otherwise, I check
the last door. If I’ve done my homework,
I can enter. Of course, if none of these
rules apply, I’m left standing in the hall.

Guess My Number Game
Listing 6 puts together everything you’ve
learned so far into a “guess my number”
game. Right at the beginning, you’ll see
a new command. The import statement
asks Python to bring in new modules. A
module is additional Python code some-
one wrote to do a specific task. Python
has thousands of modules to do any-
thing from showing pictures and graph-
ics to controlling robots and everything
in between. The random module lets Py-
thon generate random numbers.

You might notice that lines 2, 7, 9, and
23 are blank. Python doesn’t care about
blank lines, but they make code easier to
read on a screen. It’s never bad to add a
blank line to separate different parts of
your program.

FIGURE 9: Making a decision with if and elif. As I start walking down the
hallway, the rule on each door determines whether I can enter.

01 import random

02

03 low = 1

04 high = 100

05 guesses = 0

06 target = random.randint (low , high)

07

08 print "I've picked a number between {0} and {1}; start guessing, and I'll
tell you if it's higher or lower!".format (low , high)

09

10 guessing = True

11 while guessing:

12 guess = int (raw_input ("Your guess?"))

13 if guess == target:

14 guesses += 1

15 print "You got it! My number is {0}".format (target)

16 guessing = False

17 elif guess < target:

18 print "It's greater than {0}!".format (guess)

19 guesses += 1

20 elif guess > target:

21 print "It's less than {0}!".format (guess)

22 guesses += 1

23

24 print "You figured out my number in {0} guesses!".format (guesses)

LISTING 6: numberGuess.py

65

previous programs, except instead of ask-
ing the user for input, it’s asking Python
for a random number between 1 and 100
and storing it in target. The compound
name random.randint tells Python to
access the random module and call its
randint function. The (**low**,
high**) tells randint the lowest and
highest numbers it can choose.

Line 8, prints a welcome message to
describe the game. What’s new here is
the {0} in the middle of the words and
format on the end. The .format struc-
ture is another way to combine multiple
variables when printing. In hello2.py,
plus signs were used to build and print a
message. This is just another way to do
the same thing. In this way, you can
show a message that’s easy to read,
label your output, or fill in a sentence
with values from a program.

To use format, I start with a string.
(See the double quotes at the beginning
and the end?) Whenever I want to add a
value from my program, I add a place-
holder. That’s the numbers in curly
braces. It tells format to “put the vari-
able here.” If I were to stop there, you
would see:

I've picked a number between {0} and {1}; U
 start guessing, and I'll tell you if U
 it's higher or lower!

That’s not very helpful, so I add .format
on the end. When I tack on (low ,
high), it tells format what to plug in to
the placeholders.

In line 10, I set the guessing variable,
which I set to True. This will be used in
the while on line 11.

The while statement is another type
of loop that checks its condition and, if

True, runs the indented code block be-
neath it. When the code block finishes,
it checks again. If it’s still True, then the
code block runs again. That process re-
peats until the condition becomes False.
In the number-guessing game, that
means the computer will keep asking for
numbers until you get it right!

Line 12 combines a few things you’ve
seen before: the raw_input and int
from ride2.py. Here, I’ve just com-
bined them so that they only use one
line. Working from the inside out, I ask
for Your guess? with raw_input,
change the string to an integer with
int, then store it in the variable called
guess.

On line 13, I check to see if you picked
the right number. If the contents of
guess and target are equal (==) then
you win! You still made a guess though,
so line 14 adds 1 to the guess count
stored in guesses. The += 1 expression
is another shortcut. It says “add the
number on the right to the value of the
variable on the left and store that sum in
the variable on the left”.

Line 15 uses print and format to re-
mind you what the number was, and
line 16 changes guessing to False, so
the next time Python checks guessing
when it loops back to line 11 it will be
False and the loop will end. Python
then finds the next line of code that’s
not part of the while loop, which is on
line 24.

Falling out of the loop only happens if
the guess is correct! Until then, if you
haven’t guessed the correct number, you
still have to handle that case. Code
blocks 17-19 and 20-22 are almost iden-
tical. Can you spot the differences? The
first section checks to see if your guess

Traceback (most recent call last):

 File "error.py", line 3, in <module>

 print "My name is Scott and my favorite number is " + number

TypeError: cannot concatenate 'str' and 'int' objects

LISTING 8: Concatenation Error

File "oops2.py", line 3

 print My name is Scott and my favorite number is number

 ^

SyntaxError: invalid syntax

LISTING 7: Error Message for oops2.py

66 Raspberry Pi Adventures

Python Programming

is less than the target, and the second
section checks to see if your guess is
greater than the selection. Each section
has a different message to give you a
hint about what direction your next
guess should take.

Finally, once you’ve figured out the
number, line 24 tells you how many
guesses it took.

Now it’s your turn! Start with num‑
berGuess.py and see if you can make
the following changes:
•	Make Python ask you for the lowest

and highest numbers to use
•	Print the number of guesses used be-

fore asking for a guess each time
•	Limit the number of guesses you have

to figure out the number. If you run
out of guesses, print a message that
tells what the number was and stop
asking for guesses.

Errors
Sooner or later, you’ll accidentally ask
Python to do something it doesn’t un-
derstand or can’t do. These are called er-
rors and have to be fixed before your
program will run. Sometimes the mes-
sages can be strange, but if you know
where to look, they are very helpful.
Here’s an example I call oops.py:

01 number = 10
02 name = Scott
03 print My name is Scott and my U
 favorite number is number

(The arrow at the end of the line just
means to continue typing the line;
don’t try to type the arrow!) To try it,

type and save this listing in the text edi-
tor – without the line numbers – then
enter python oops.py in the terminal.
You should see a message like this:

Traceback (most recent call last):
 File "error.py", line 2, in <module>
 name = Scott
NameError: name 'Scott' is not defined

Python is telling you that something
isn’t right. But look right in the middle –
a line number! The first clue. Can you
spot what I did wrong?

I forgot to put double quotes around
my name. The last line tells me what Py-
thon doesn’t understand: name ‘Scott’ is

It’s also possible to talk to Python directly. Go to the terminal and type python. After a
short introduction, you’ll see the >>> prompt, which means you’ve entered the Py-
thon interpreter, and it is ready for you to talk to it (Figure 10). Python makes a great
calculator, so enter a math problem and press Enter. You use the usual plus sign (+)
for addition and the hyphen (-) for subtraction, but instead of an ‘x’ for multiply, use
an asterisk (*); to divide, use the slash (/​).
The Python console is also a great way to see if you have a module on your Pi. Try
typing import random. Python immediately returns a new prompt (>>>), so you’re
good to go! If you try to load something that doesn’t exist, you’ll get an error; for ex-
ample, try entering import imaginaryModule.
When you’re done playing in the Python interpreter, press Ctrl+D or type quit() to
exit; then, type exit to exit the terminal.

Talking to Python

FIGURE 10: Using the Python interpreter.

67

number = 23
name = "Joe"

The output now says: My name is Scott
and my favorite number is 23. Uh oh, I
stole Joe’s favorite number. Can you
see what I did wrong? I need to change
line 3:

print "My name is {1} and my favorite U
 number is {0}".format (number , name)

Great! It’s all working! The output now
says, My name is Joe and my favorite
number is 23. Notice that the placehold-
ers in line 3 are out of order; however, as
long as the variables inside the format
parentheses are in the right order, I don’t
have to renumber anything as I add
more information.

Even with this simple program, it took
a lot of tries to get it right. Finding errors
and fixing them is a big part of the chal-
lenge of programming. Don’t let it get
you down; just keep trying and take it in
small chunks.

Exercises
With the information I’ve given you in
this article, you should be able to write a
program to calculate your age:
•	Ask what year it is
•	Ask what year you were born
•	Show the answer
In another program, you could roll a dice:
•	Ask how many sides the dice has
•	Ask how many times the dice should

be rolled
•	Show each roll and then the total of all

rolls
In addition to running program files
with your Python code, you can talk
directly to Python in the terminal. See
the “Talking to Python” box for more
information. X

About the Author
Scott has been programming in Python
as a hobby for many years. He’s very
grateful to Eliese Donhardt for illustrating
this special edition article.

not defined. Python doesn’t know what
Scott is, so it’s stuck. Once I fix it my
code (oops2.py), it looks like this:

01 number = 10
02 name = "Scott"
03 print My name is Scott and my U
 favorite number is number

It still doesn’t work, but I got another a
hint (Listing 7). My problem is in line
3. Moreover, Python is pointing me to
where it thinks the problem is with the
caret (^). Any time Python talks about
a syntax error, it means there’s some-
thing wrong with the format of the
code. Can you spot my error?

I forgot to put double quotes on my
output string again. I’ll try one more
time:

01 number = 10
02 name = "Scott"
03 print "My name is Scott and my U
 favorite number is number"

It works! Well, sort of. Python isn’t giv-
ing me an error, but the program is not
doing what I want. There’s nothing
wrong with the code I’ve typed, but I
haven’t successfully figured out how to
tell Python what I want to do yet. These
can be hard to figure out since you
don’t get any hints from Python as to
what’s wrong. I’ll try to fix it with this:

01 number = 10
02 name = "Scott"
03 print "My name is Scott and my favorite U
 number is " + number

Now I have an informative error mes-
sage (Listing 8) that is telling me I can-
not concatenate, or put together, string
and integer objects on line 3. Remember
that I fixed this problem in the number‑
Guess.py program with the format
structure:

number = 10
name = "Scott"
print "My name is Scott and my favorite U
 number is {0}".format (number)

The output for this code is My name is
Scott and my favorite number is 10.
Great, it’s working! Now I’m going to
show my friend Joe. His favorite number
is 23, so lines 1 and 2 need to be:

68 Raspberry Pi Adventures

Python Programming

This easy electronics
project introduces you to
the breadboard and other

tools for integrating
your Raspberry Pi with

electrical circuits.
 By Bill Sumner

You can have a lot of fun on a Rasp-
berry Pi just playing with

the software. Even beginning users can
quickly learn to make music, play a
game, surf the web, or write a letter
using programs that run internally on
the Raspberry Pi system. But many be-
lieve the real fun is in using the Rasp-
berry Pi with electronics projects.

With a few extra parts and a little
knowledge of electronics, you can make
your Pi turn on lights, ring bells, and
control motors. The possibilities for cool
projects are endless. Of course, the best
ideas are the ones you come up with
yourself, but this article will help you
get started with electronics on the Rasp-
berry Pi. I’ll show you how to use your
Raspberry Pi to control a simple score-
board for tracking the balls and strikes
in a baseball game. Along the way,
you’ll discover the Raspberry Pi GPIO
pins and learn about common electronic
components like breadboards, jumpers,
resistors, and pushbuttons.

Circuits
Electrical current brings energy to an
electronic device such as a light or a
motor. Current flows through an electri-

cal circuit. The electrical properties of
the circuit are typically expressed with
the following parameters:
•	Volts: Think of the voltage as the

amount of pressure trying to push the
electrons along the wire. The Pi uses
3.3 volts (3.3V) for providing power to
circuits through the GPIO pins, which
you’ll learn about later in this article.

•	Ohms: Ohms measure the amount of
resistance to the flow of the electrons
– how hard it is for the voltage to push
electrons through a resistor. This proj-
ect will use resistors to control how
much electrical current will flow in the
circuit. (See the box titled “Resistor
Color Codes.”)

•	Amperes: Amperes are a measure of
the electrical current – the number of
electrons that flow past any point of
the wire each second. However, one
ampere (or one amp) is a really big
number of electrons – far too much
current for anything in this article.
None of the parts described in this ar-
ticle needs more than a few thou-
sandth’s of an Ampere: a few milli-
amperes (mA).

These parameters are related through an
equation known as Ohm’s law, which
states that the number of volts is equal

Score
Building an Electronics Project
with the Breadboard and GPIO Pins

Le
ad

 Im
ag

e
©

A
le

xa
nd

r
A

le
ab

ie
v,

 1
23

R
F.

co
m

70 Raspberry Pi Adventures

Electronics

to the number of amperes multiplied by
the number of ohms.

If you know two of these values, you
can calculate the third. Since you almost
always know the voltage (3.3V from the
Pi), you can choose the resistor you
need to provide the necessary electrical
current to the electrical components on
the circuit.

To calculate the ohms needed to provide
a specific amount of current, divide the
volts by the amperes of current you want:

ohms = volts / amperes

For example: most LEDs need about
3mA (.003 amps) or maybe just a little
more. The Pi provides 3.3 volts, so:

ohms = 3.3 / .003

Use the calculator program on your Pi
(Menu | Accessories | Calculator) and
enter 3.3 / .003

ohms = 1100

so you will need an 1100-ohm resistor in
the circuit with the LED to limit the cur-
rent to 3mA.

However, 3mA is actually on the low-
end of what LEDs like, and since a 1K
(1000-ohm) resistor is a common value,
you can use the 1K resistor. 1000 ohms
gives the LED a little bit more current
than the 1100 ohm resistor and it will
work just fine.

To see just how much current the 1K
resistor gives the LED, modify the equa-
tion as follows:

amperes = volts / ohms

On the calculator:

3.3 / 1000

The LED gets 3.3mA – about 10 percent
more, and that works just fine.

WARNING: Do not connect more than
3.3V to any of the GPIO pins! See the box
titled “Warnings” for more precautions
you’ll need to keep in mind when wiring
your Raspberry Pi circuit.

Pi in a Circuit
The Raspberry Pi is designed to serve
as a power source for small electrical

circuits. As the previous section de-
scribed, the Pi is capable of providing
3.3V for an electrical circuit. 3.3V is
enough for a simple circuit like the
ones described in this article. (Bigger
and more powerful creations will need
an external power source.)

The Raspberry Pi communicates elec-
trical information with the outside world
using a bank of pins on the Rasp Pi
board known as the GPIO (General Pur-
pose Input and Output) (Figure 1). GPIO
pin layouts differ for different versions
of the Raspberry Pi. The pin layout for
the Raspberry Pi 2 is shown in Figure 2.

The GPIO pins serve as an interface
for letting the software running on the

You can read the value of a resistor
by decoding the colored rings
around the resistor near one end.
The colors give the amount of resis-
tance (measured in ohms) provided
by the resistor.
The color of each ring is code for
one digit of the resistance value.
The color codes were chosen to
make it easy to remember which
color represents each digit from
zero to nine:

0 Black
1 Brown
2 Red
3 Orange
4 Yellow
5 Green
6 Blue
7 Violet
8 Grey
9 White

To read the value of the resistor,
hold the resistor so that the colored
rings are closest to the left end, and
then decode each ring from left to
right into a digit. The leftmost color
is the “tens” digit. The next color is
the “ones” digit. The third color is
“number of zeros to append to the
first two.” The fourth color (if there
is one) can be ignored for our pur-
poses. It encodes the “tolerance” of
the resistor value, which tells the
maximum amount that this resistor

might be away from the value
coded by the first three rings.
With modern manufacturing, all of
the resistors in the kit will be close
enough to their encoded value for
this project.

Example A: Brown, Black, Red 1, 0,
2 zeros = 1000 ohms (1 thousand
ohms) (1K)

Example B: Yellow, Violet, Brown 4,
7, 1 zero = 470 ohms (470 ohms)

Example C: Orange, Orange, Brown
3, 3, 1 zero = 330 ohms (330
ohms)

Example D: Brown, Black, Orange 1,
0, 3 zeros = 10,000 ohms (10 thou-
sand ohms) (10K)

Note: Large resistor values are often
written as a value followed by K or
M (kilo or mega):

Example E: 4.7K is 4.7 thousand
ohms or 4700 ohms

Example F: 33M is 33 million ohms
or 33,000,000 ohms

Sometimes the K or M is not at the
end but in the position of the deci-
mal point:

Example G: 2200 ohms written as
2K2

Example H:: 5.6 million ohms written
as 5M6

Resistor Color Codes

71

berry Pi with electronic components
through the GPIO.

The Project
This simple project manages an old-time
baseball scoreboard like the ones that
still exist at some fields: Separate light

Raspberry Pi talk with electronic devices
in the real world. But, as you can see in
Figure 1, the GPIO pins are close to-
gether and are very difficult to work
with if you wish to connect wires and
other electrical components. People who
play with Raspberry Pi electronics typi-
cally like to wire up their electronic cir-
cuits using a breadboard (Figure 3), then
use a specially designed cable and inter-
face called a cobbler (Figure 4) to con-
nect the breadboard with the Raspberry
Pi GPIO pins. The breadboard is de-
signed to make it easy to build circuits
by connecting wires, resistors, and other
electronic components.

The project in this article uses a bread-
board and cobbler to connect the Rasp-

Never connect more than 3.3V to any of the GPIO pins. A higher voltage will damage
it. If you experiment with the breadboard, DO NOT connect anything to either of the
5V pins on the cobbler. This will almost surely damage the Pi.
Note that many other Integrated Circuit (IC) chips use 5V. When connecting any of
these 5V ICs to the Pi’s GPIO pins, always use a voltage level shifter to convert the 5V
from the IC into 3.3V for the Pi. Any Pi project plan that uses some 5V chips should
tell you how to do this.
The Pi has very low limits on current both for each individual GPIO pin and for the
total current from all the pins. Keep in mind:
• Each GPIO pin is limited to 16mA.
• The total current suppled by the Pi is limited to 50mA.
All of the current you pull from all of the GPIO pins plus the current you pull from
the 3.3V power pin MUST total no more than 50mA. If you pull more than 50mA
total, you can overheat the Pi and damage it.

Warnings

FIGURE 1: The GPIO pins let the Raspberry Pi communicate with external cir-
cuits connected through electrical circuits. FIGURE 2: Pin layout for the Raspberry Pi

GPIO pins.

72 Raspberry Pi Adventures

Electronics

bulbs track the balls, strikes, and outs in
the inning. If you are more familiar with
other sports, you could easily adapt this
concept to implement a soccer, hockey,
rugby, or basketball scoreboard.

Although I will only work with indi-
vidual lights, a more advanced extension
of this concept could illuminate patterns
of lights that form numbers or letters.
See the box titled “Batter Up” for some
background on pitch counts and score-
boards in baseball.

The scoreboard provides three rows of
lights, representing the “balls,”
“strikes,” and “outs.” The scorekeeper
pushes one pushbutton to record a
“ball” and another pushbutton to record
a “strike.” After four balls, the ball lights
blink to signify a walk. After three
strikes, the strike lights blink to signify a
strikeout. Press the button again to reset
the count. Another pushbutton records
outs. After three outs, the “out” lights
blink, meaning the teams switch and the
other team gets to bat. Press the out but-
ton again to reset.

The project has two big parts (see the
“What You'll Need” box): A breadboard
with seven LEDs (3 balls, 2 strikes, 2
outs) and three pushbuttons (“umpire

called a ball,” “umpire called a strike,”
“team made an out”) serves as the
scoreboard. There are seven copies of
the output circuit (LEDs) and three cop-
ies of the input circuit (buttons).

The other important component is a
Python program that runs the bread-
board and knows enough baseball rules
to run the scoreboard:
•	Four balls is a “walk”
•	Three strikes is an “out”
•	Three outs and the other team comes

to bat
I have already written the Python pro-
gram and tested it with my breadboard
on a real baseball game.

This project uses inexpensive parts,
uses only the 3.3-Volt power supplied
by the Pi, needs no soldering and trim-
ming wires, and doesn’t even require
any programming – I wrote the first
program for you. The program is in Py-
thon, so with a little bit of “cut and
paste,” you can modify the script and
make this same hardware do a lot of
other things.

The Circuits
This project uses two types of circuits –
input and output. The input circuit lets
you advance the scoreboard by pressing
a pushbutton. The output circuit has an
LED light that illuminates to display the
score. For each of these circuits, the
wires on the breadboard are exactly the
same. The only difference is that the
output circuit has an LED and the input
circuit has a pushbutton.

The wiring for both circuits:
1. �Starts at a pin on the cobbler (comes

from the Pi)
2. �Goes through a 1000-ohm resistor
3. �Goes through either the LED (output)

or the pushbutton (input)

FIGURE 3: A breadboard offers a conve-
nient space for wiring electrical

components. FIGURE 4: A cobbler connects the breadboard with the Raspberry Pi GPIO pins.

.......

73

close to zero volts. Any time the pro-
gram wants to know, it can ask the Pi:
“Which voltage do you see right now on
this pin?” and the Pi returns the answer.
For a more in-depth look at the circuits,
see the “Circuit Diagram” box.

The designers of the Pi have made it
easy for extra parts like our breadboard
to set the voltage on an input pin high or
low. When the program tells the Pi to set
up a pin for input, it can also tell the Pi:
“Unless the outside circuit connects the
input pin to gnd, make the voltage on
the pin close to 3.3V”. All you need to do
is let the button connect the pin to gnd
through the 1K resistor or not. This pulls
the voltage on the input pin “close to
zero” or leaves it “close to 3.3V.”

Assembling the Parts
onto the Breadboard
Once you have gathered all the parts, it’s
time to start assembling. The first step is
to put together all the parts on the bread-
board. Don’t attach the ribbon cable that
came with the cobbler to the cobbler or
the Pi yet. Please refer to Figure 5, the
“Completed Breadboard,” frequently as
you assemble your breadboard.

The empty breadboard should be ori-
ented with the “long way” going left to
right and the “short way” going from
near you to farther away. This project
will ignore the column numbers printed

4. �Goes to the “ground bus” – more
about this later

5. �Goes to the “gnd” pin on the cobbler
(and back to the Pi)
A program running on the Raspberry

Pi tells the Pi which GPIO pins are used
as inputs and which pins are used as
outputs.

An output pin on the GPIO acts just
like a light switch on the wall. It’s either
on or off depending on which way the
program wants it. The program can set
the pin on or off any time it wants to.

An input pin is more interesting. The
Pi hardware watches the voltage on the
pin to see whether it is close to 3.3V or

Baseball looks a little like the game of
cricket at first glance. A player (called the
batter) stands with a bat (a big stick) and
waits for the pitcher to throw the ball. The
pitcher is expected to throw the ball at a
well defined area in front of the batter
(called the strike zone). If the pitch does
not pass through the strike zone, the bat-
ter doesn’t have to swing at it, and the
pitch is called a “ball.” After four balls, the
batter can go to first base, and this is
called a “walk.”
If the pitch does land in the strike zone,
the batter is expected to swing at it. If the
batter swings and misses, or doesn’t
swing at all, the pitch is called a “strike.”
After 3 strikes, the batter is “out,” mean-
ing the batter has lost the chance to hit the
ball and another batter now has a chance.

If the player manages to hit the ball, any
number of scenarios might occur depend-
ing on where the ball is hit and what the
defensive team does with it, but basically,
the batter either reaches base or is “out.”
After three outs, the teams trade: the de-
fensive team gets to bat and the team
that was batting goes out to the field.
Years ago, many baseball fields had a sim-
ple scoreboard like the one described in
this article for tracking the number of
balls, strikes, and outs. Today, major
league fields have wild and colorful elec-
tronic scoreboards that light up like a
video game screen and provide a lush,
high-resolution display. Many small local
fields, however, still have this simple type
of scoreboard, with rows of lights repre-
senting the balls, strikes, and outs.

Batter Up

FIGURE 5: The completed project breadboard before it is attached to the Pi.

74 Raspberry Pi Adventures

Electronics

on the breadboard and just count rows
and columns of holes.

Inside the breadboard are lots of long,
flat, tiny metal springs that connect
some of the holes on the breadboard to-
gether electrically – holes that are in a
straight line.

When you push a wire into a hole, it
connects to the spring underneath that
hole inside the breadboard. If some
other wire is pushed into another hole
along that same spring, the two wires
are connected together electrically.

The breadboard has three sections
from top to bottom. Each section is
electrically separate from the other sec-
tions. The top Section – the one farthest
away from you – has two rows of holes,
one row above the other. On each of
these rows, all of the holes are con-
nected together, but the two rows are
not connected to each other. This forms
two electrical “buses.” An electrical
“bus” is just a wire with a lot of places
to connect a bunch of other wires to-
gether. Each row is usually marked
with a different colored stripe – often
red, blue, or green. This project will not
use this top section.

The middle section is 10 rows high and
60 columns wide. This section has two
rows of five vertical holes, one row above
the other. In each column of 10 holes, the
upper five holes are connected together
and the lower five are connected to-
gether. The top and bottom halves are not
connected together. Each column is elec-
trically separate – not connected to any

other column. Most breadboards have a
divider between the upper and lower
halves, either a printed line or a line
molded into the plastic. All the parts for
this project will be in this section.

This project requires two types of circuits. The output circuit (Figure 6A)
is very simple. The output pin is either on or off depending on which way
the program wants it. When the pin is on, the current flows through the
1K resistor, which limits it to about 3mA. Current then goes through the
LED and back to the Pi through the gnd pin.
When the program sets up an input pin, it can also tell the Pi to put a
“pull-up” resistor into the circuit inside the Pi. Then you put the 1K resis-
tor and the button on the breadboard. All this is shown in Figure 6B. Fig-
ures 6C and 6D show details for the right-hand side of Figure 6B.
I am interested in how much voltage is given to the 1K resistor because
that tells me how close to ground (0V) the pin is. I calculate it this way
using the Pi calculator:

1000 + 50000	 1000 ohms + 50000 ohms
 = 51000 		 The total resistance
1000 / 51000	 Divide the lower ohms by the total.
 = 0.0196		 The fraction of the lower resistor
		 divided by the total resistance.
0.0196 * 3.3 	 Take this fraction of the total voltage.
 = 0.0647 volts 		 The Pi "watcher" sees this voltage.
		 (This is really close to zero.)

You might ask: “Why do I need the 1K resistor? Why not just connect the
input pin directly to the button?” The answer is: “The 1K resistor protects
your Pi against a common programming error – setting that pin to be an
output.” With the pin set to “output,” pressing the button would short-cir-
cuit the Pi’s 3.3V power supply, which would damage your Pi.
Using a 1K resistor, as shown, limits the output current to about 3mA just
as it does in LED output circuits.

Circuit Diagram

FIGURE 6: Circuit diagrams for both the input and output pins. The “Circuit Diagram” box explains the electrical workings of
these circuits.

A
Output Pin

Circuit

B
Input Pin

Circuit

C
Button

Not Pressed

D
Button
Pressed

Pi

Pi
s

In
te

rn
al

 3
.3

v
Po

w
er

 S
up

pl
y 3.3v

0v

Pr
og

ra
m

 C
on

tr
ol

le
d

Sw
itc

h

LED

Output
Pin

Ground
Pin

Pi

Pi
s

In
te

rn
al

 3
.3

v
Po

w
er

 S
up

pl
y 3.3v

0v

Pi Watches
Voltage Here

Push
Button

Input
Pin

Ground
Pin

50K Pull-Up
Resistor

1K Resistor
1K Resistor

No Connection

0v

3.3v

50K

1K

Watch

0v

3.3v

50K

1K

Watch

75

Wiggle the cobbler board a little bit to
make sure that each of the pins is di-
rectly over its hole in the breadboard.

Press the pins of the cobbler PC board
into the breadboard. Press straight
down, and the PC pins should all go in
with no problems. I used both thumbs
and both forefingers, pressing on the
edges of the PC board to spread out the
“push.”

The Pushbuttons
Next, place the three pushbuttons at the
right end of the breadboard. On the but-
tons from Adafruit, the 4 pins on each
button form a small rectangle (sized 3
holes by 6 holes). The 6-hole length
goes across the center divider, letting the
upper pins rest on the second row above
the divider and the lower pins rest on
the second row below the divider. The
right 2 pins will be in the rightmost col-
umn of the breadboard and the left pins
will be two columns to the left.

Skip two columns to the left and place
the next button beside the first – so that
you leave two empty columns between
the nearest pins of these two buttons.

Skip two more columns to the left and
place the third button just like you did
the second one.

The bottom section – the one closest
to you – looks just the same as the top
section: two single-row electrical buses
that are not connected to each other. I
will use one bus in this bottom section
for the project’s electrical “ground.”

Electrical “ground” is the place in the
circuit that always has zero volts. It is
the place from which we measure the
voltage at all other parts of the circuit.
“Ground” is normally connected to the
negative side of the power supply.

The GND pins on the cobbler are all
connected to the negative side of the Pi’s
power supply inside the Pi; and of
course, all of the GND pins on the cob-
bler are connected together. They are all
at zero volts.

The Cobbler
Place the cobbler PC board, pins down,
at the left end of the breadboard with
the pin labeled 3V3 in the lower set of 5
holes and the end pin labeled 5V in the
upper set of 5 holes – both in the left-
most column of the breadboard. All the
other pins will line up over the bread-
board columns to the right. I left three
rows of holes open below the PC board
and two rows of holes open above the
PC board.

You’ll need the following parts for this project. I’ve sug-
gested some vendors I have used in the past, but you will
also find these components with many other electronic
distributors. The Raspberry Pi Foundation website [1] lists
the official distributors RS [2], Allied Electronics [3], and
Element14 [4].
• �Raspberry Pi – This project was designed and tested

with the latest Pi 2 Model B. I have not tested this proj-
ect on earlier Pi models. Some of them have only 26
GPIO pins instead of the 40 on the Pi 2 Model B.

• �Pi Cobbler – by Adafruit [5]. A Pi cobbler connects all of
the GPIO pins on the Pi to a breadboard and provides a
set of labels to make it easy to connect the extra parts to
the right pin. Get an assembled version of the cobbler so
you won’t need to solder it together. Also, get the ver-
sion of the cobbler for the version of your Pi.

• �10 1K resistors (1000 ohms each) – Jameco [6], Digi-Key
[7], Mouser [8]. Use 1/​4-watt resistors. Their wires are
easy to work with. (See Figure 7.)

• �7 LEDs – Jameco, Digi-Key, or Mouser. My LEDs are red,
size T1, standard LEDs. You can use any color. Red,
green, yellow are popular. Don’t buy the infra-red ones;

human eyes can’t see infra-red. Most electronic distribu-
tors sell LEDs in packages of 10 or 12 or give a price
break around that number.

• �3 pushbuttons – Adafruit. “Will it fit into the bread-
board?” is the big question here. Holes in the breadboard
are spaced 1/​10th inch (2.54mm) apart both horizon-
tally and vertically. You want a button whose leads
(pins) are spaced to fit a breadboard because many but-
tons have pins that are too short and stiff to bend.

• �10 long breadboard jumpers – 7 to 8 inches (20cm) long.
The ones I used are 26 gauge stranded wire with a rein-
forced pin at each end. (Figure 8.) This length will let
you reach anywhere on the breadboard with wire to
spare. From Jameco or Adafruit.

• �11 shorter breadboard jumpers – 1 to 2 inches (5cm)
long. Same as the long jumpers, just shorter. From Ja-
meco or Adafruit.

• �1 breadboard – full size. Adafruit or Jameco. Mine is
60 columns wide and has red and blue stripes along
both the top and bottom of the board to mark the
long rows that are often used for electrical power and
ground.

What You’ll Need

76 Raspberry Pi Adventures

Electronics

On the buttons from Adafruit, the two
pins on each long side of the 3x6 rectan-
gle are connected together inside the
button. When the button is pressed, all
four pins are connected together.

Press the buttons into the breadboard
so that the pins “click” into the bread-
board. I used my thumbnails (mine are
quite sturdy) to push on the button
frame just above and below the button
itself.

The LEDs
Skip the 7 columns to the left of the left-
most button, then insert 2 LEDs into the
next four columns below the center di-
vide. Use the second hole below the cen-
ter divider because you will need the
first hole below the divider for a resistor.
On each of the LEDs, the long wire goes
into the right hole and the short wire
goes into the left hole. These first 2 LEDs
are for counting the number of outs. The
left one is called led_out1 and the right
one is called led_out2 in the Python
program.

Skip two more columns to the left and
then insert two more LEDs. These LEDs
will be the strike count. The left one is
called led_strike1 and the right one is
called led_strike2 in the Python pro-
gram.

Skip two more columns to the left and
insert three LEDs. These LEDs will be
the ball count. The left one is called
led_ball1, the middle one is led_
ball2, and the right one is led_ball3.

Wiring the Ground (GND)
connections
On the cobbler are several pins marked
GND. I will use the GND pin on the
lower side of the cobbler – 5 pins from
the left end of the cobbler. Connect this
cobbler GND pin to the bus below it (the
one nearest you) using a short jumper
wire. On my breadboard, this bus is col-
ored blue, so I will call it “the blue bus.”

Connect the right wire of each LED to
the same blue bus across the bottom of
the breadboard using seven more short
jumpers.

Connect the lower left pin of each
pushbutton to the same blue bus across
the bottom of the breadboard using
three more jumpers.

Note: On my breadboard, all of these
short jumpers are yellow, solid-wire
jumpers from a jumper kit that provides
several lengths, each pre-bent to fit across
a different number of holes in a bread-
board. These kits are available from sev-
eral parts houses.

I have now connected each of the
parts to the blue “ground” bus and have
connected the blue bus to the GND pin
of the Pi. “Ground” is the negative side
of the electrical circuit and will always
be at zero volts.

FIGURE 7: A package of 50 resistors minus the ten I used for this project. The brown-
black-red colored bands tell that these are 1K resistors (1000 ohms). See

the box titled “Resistor Color Codes.”

FIGURE 8: You will need the long, flexible jumpers to connect the cobbler
pins to the LED and button resistors. The small stiff-wire jumpers

on the left come in a kit with several dozen of each size in a plastic case. The
colors encode the length as the number of breadboard holes they span from one to
nine – using the same colors as the resistor color codes.

77

top hole of the lower half of the column
that holds the left wire of the leftmost
LED. A pair of longnose pliers helps
this greatly. Grip the wire about a quar-
ter-inch (a little less than a centimeter)
from the end of the wire and push it
into the breadboard. Then, do the same
to insert the other end of the resistor
into the middle hole of the upper half
of that same column above the center
divider (Figure 9).

Repeat the preceding step to install re-
sistors onto the left wire of each LED.

Connecting the Resistors
to the Pushbuttons
For each pushbutton:

1. Find the upper-left pin of the button
and notice that the column to the left of
that pin is empty – no wires connected.

2. In this empty column, put one end
of a resistor into the hole next to the top
row. It is very important to connect this
end of the resistor to an empty column.

3. Put the other end of this resistor
into the hole just above the upper-right
pin of that same button.

Notice that I put the button resistors at
a slight angle with the left end one hole
higher than the right end (Figure 10).
This just gives a little more separation
between the wires of the resistors. You
do not want the wires to touch each
other.

Connecting the GPIO Pins
to the Resistors
Now it’s time to wire the GPIO pins on
the cobbler to the top ends of the resis-
tors. I will use GPIO pins on the cobbler
that are named with numbers. The GPIO
pins that are named with letters have ad-
ditional special abilities that you won’t
need for this project.

Note: The pin numbers on the cobbler
are in a strange order. Just ignore the
order, find the pin named with the proper
number on the cobbler PC board, and use
that pin.

Notice that each GPIO pin will be con-
nected to a resistor and to nothing else.
This helps protect the Pi from a short-
circuit just in case you run a program
that does not match the wiring on the
breadboard.

Now connect the other side of each part
to its GPIO pin through a 1K resistor
(1000 ohms). As you install the resistors,
leave the top hole of the upper half of
each column open so that later you can
use a long jumper to connect that end of
the resistor to one of the numbered
GPIO pins on the Cobbler.

Connecting the Resistors
to the LEDs
The LEDS are in the lower half of the
center section. For each LED, use a 1K
(1000 ohm) resistor to connect the left
wire of the LED to the upper half of the
same column.

The wires on a new resistor go straight
out from the ends. To bend the wire
leads of the resistor at right angles like I
did:
1. �Pick up a resistor by its body.
2. �Hold it between the thumb and fore-

finger of your left hand with the wires
going up and down.

3. �Place your right forefinger and
thumb lightly on the top and bottom
of the knuckles of your left finger
and thumb and slowly slide them to
the right. When they reach the wires,
the wires will bend nicely. Keep slid-
ing to the right until your right fin-
ger and thumb slide off the ends of
the wires.
Insert one end of a resistor into the

FIGURE 9: Close up of the left end of the completed breadboard. Note how the
long jumpers go from the numbered cobbler pins to the upper end of

the LED resistors. Also, note that the 3V3 pin on the cobbler is plugged into the
left-end hole on the breadboard.

78 Raspberry Pi Adventures

Electronics

I chose GPIO pins on
the upper side of the cob-
bler for the LEDs.

The leftmost LED is
called led_ball1 in the
python program. Connect
a jumper wire from cob-
bler pin 23 to the topmost
hole in the column with
the resistor for that LED.

The circuit for led_
ball1 now goes from
the cobbler pin 23,
through the resistor, into
the left wire of the LED,
out the right wire of the
LED, through the short
jumper, and into the
blue “ground” bus at the
bottom of the bread-
board.

In the same way, con-
nect the cobbler pins
listed below to the resis-
tors of the remaining
LEDs from left to right.
•	Pin 24 to led_ball2
•	Pin 25 to led_ball3
•	Pin 12 to led_strike1
•	Pin 16 to led_strike2
•	Pin 20 to led_out1
•	Pin 21 to led_out2
Connect the cobbler pins listed below to
the resistors of the pushbuttons from left
to right. The jumper wire connects to
the left end of the resistor – the end that
is not connected to the button. I chose
GPIO pins on the lower side of the cob-
bler for the buttons.
•	Pin 26 to add_ball – The resistor of

the left button
•	Pin 19 to add_strike – The resistor of

the middle button
•	Pin 13 to add_out – The resistor of the

right button
The pushbutton circuits now go from
the cobbler pin, through the resistor,
into the upper-right pin of the button,
out of the lower-left pin of the button,
and through the short jumper to the blue
ground bus. The breadboard wiring is
now complete.

Before you connect the breadboard
to the Pi, take the time to trace the cir-
cuit for each LED and each button to
make sure it is correct. Make sure the
left end of each button resistor is not
plugged into the same column as any
button pin.

Connecting the
Breadboard to the Pi
Shutdown the Pi and turn the power off.
Next, turn the Pi so that the GPIO pins
are in the upper-left corner. The GPIO
pins will be on the side of the Pi away
from you.

Because the connector on either end
of the ribbon cable will connect to the
cobbler, you now have a choice. You can
place the breadboard closer to you than
the Pi or farther away than the Pi.

Choose one, then place the bread-
board so that its left end lines up with
the left side of the Pi. The distance be-
tween them should be a little less than
the length of the cable. My cable is
about 6 inches (15 centimeters) long.

The wire at one side of the ribbon
cable is a different color. My black rib-
bon cable has a white wire along one
side. Place the ribbon cable between the
breadboard and the Pi so that the differ-
ent-colored wire is along the left end of
both the breadboard and the Pi.

Lightly place the end of the cable clos-
est to the cobbler into the socket on the
cobbler. It will only fit one way. Using

FIGURE 10: Close up of the pushbuttons. Note that, on the
pushbutton at the end of the breadboard, the

jumper from the cobbler and the left end of the resistor are in a
column all by themselves. The left pin of the pushbutton is in the
next column over. Each pushbutton jumper and resistor should be
in a column by itself; it is just easier to see the wiring for the
button on the end of the board.

79

If anything else happens or if the Pi
does not boot up normally, disconnect
the power immediately and find out
what is wrong.

both thumbs, press the cable header into
the cobbler socket.

Connect the other end of the ribbon
cable to the Pi.
1. �Make sure that the differ-

ent colored wire is at the
left end of the Pi board.

2. �Place the ribbon cable
connector lightly over
the GPIO pins on the Pi.
The Pi has no “keyed
socket” to force the cable
to go only the right way
(like the cobbler does),
so you have to be care-
ful. Compare your ar-
rangement with Figure
11, which shows my
breadboard and Pi con-
nected together.

3. �Make sure that the rib-
bon cable connector cov-
ers all of the of GPIO
pins on the Pi and covers
both rows, and that there
are no Pi pins showing at
the ends of the connec-
tor.

4. �Press straight down on
both ends of the ribbon
cable connector.
Power-on the Pi and

watch the Pi and the bread-
board carefully. The Pi
should boot up normally
and nothing should happen
on the breadboard.

FIGURE 11: The completed breadboard connected to the Pi
with the ribbon cable that came with the cob-

bler. Note that the white wire of the black ribbon cable is
along the left end of the breadboard (which should be the
only way it will fit into the cobbler socket). Note also that the
white wire is along the left edge of the Pi.

FIGURE 12: A screenshot of baseball.py running the breadboard. Nothing changes on the
screen while you operate the pushbuttons on the breadboard. When you press

ctrl-c (hold the ‘ctrl’ key down and press ‘c’ with another finger) the program will print a one-
line exiting message, reset the GPIO pins to default (the LEDs will turn off), then exit.

80 Raspberry Pi Adventures

Electronics

baseball.py
The last piece of the puzzle is the pro-
gram called baseball.py (Listing 1)
that runs on the Raspberry Pi. base‑
ball.py listens for input from the
pushbuttons and controls the LED
lights on the scoreboard. A file with the
complete source code for baseball.py
is available for download [9] if you
would rather not type it all in.

 You’ll need some background in Py-
thon to fully understand what the code
in Listing 1 is doing, but, as you can see,
the code is well documented, so you
should be able to gain some insights into
how the program works by reading
through it.

The box titled “Notes on baseball.py”
explains how the GPIO functions work.
The box also explains three Python fea-
tures in the program that you might not
have seen yet.

Login to the Pi and change directory
(cd) to the directory that the program
is in.

Hint: If you type “clear” (no quotes)
before starting the program, you will
have a cleaner printout on the screen.

clear

Type the following on the keyboard:

sudo python baseball.py

The program will print a few lines onto
the screen and then say that the baseball
scoreboard is ready (Figure 12).

On the breadboard, press and release
the left button. Don’t release it too
quickly. Hold the button pressed for just
a moment before you release it. The
led_ball1 LED should light.

Press and release the same button,
and the led_ball2 LED should light.

Press and release the same button a
third time and the led_ball3 LED
should light.

Press and release the same button the
fourth time, and all of the led_ball
LEDs should start blinking to say that
the pitcher walked the batter.

Press and release the same button one
more time to clear the ball count back to
zero (all off).

Move to the middle button, and the
strikes LEDs should work the same
way as the ball LEDs. The lights should

001 �# baseball.py displays the status of a baseball or softball inning
002 �# using LEDs on a breadboard just as the lights on the old‑time
003 �# "scoreboard" at the game used to do.
004 �#
005 �# balls 3 LEDs ‑‑ first 3 balls, blinks for a walk
006 �# strikes 2 LEDs ‑‑ first two strikes, blinks for strikeout
007 �# outs 2 LEDs ‑‑ first 2 outs, blinks for the third out
008 �# ‑‑‑
009 �#
010 �
011 �# ‑‑‑
012 �# Import the time module ‑‑ so the program can sleep occasionally
013 �# ‑‑‑
014 �import time
015 �
016 �# ‑‑‑
017 �# Import and Initialize the GPIO module
018 �# ‑‑‑
019 �import RPi.GPIO as GPIO
020 �print "Imported: RPi.GPIO as GPIO"
021 �print "GPIO.VERSION", GPIO.VERSION
022 �
023 �GPIO.setmode(GPIO.BCM)
024 �GPIO.setwarnings(True)
025 �
026 �# ‑‑‑
027 �# Choose which GPIO pin increments the balls, strikes, outs
028 �# Note: This must match the wiring on the breadboard
029 �# ‑‑‑
030 �add_ball = 26
031 �add_strike = 19
032 �add_out = 13
033 �
034 �# ‑‑‑
035 �# Choose which GPIO pin each LED is attached‑to
036 �# Note: This must match the wiring on the breadboard
037 �# ‑‑‑
038 �led_ball1 = 23
039 �led_ball2 = 24
040 �led_ball3 = 25
041 �
042 �led_strike1 = 12
043 �led_strike2 = 16
044 �
045 �led_out1 = 20
046 �led_out2 = 21
047 �
048 �# ‑‑‑
049 �# Make lists of GPIO pins used for balls, strikes, outs, buttons
050 �# ‑‑‑
051 �pinlist_balls = [led_ball1, led_ball2, led_ball3]
052 �pinlist_strikes = [led_strike1, led_strike2]
053 �pinlist_outs = [led_out1, led_out2]
054 �pinlist_inputs = [add_ball, add_strike, add_out]
055 �
056 �# ‑‑‑
057 �# Tell GPIO about the input pins (Connected to buttons)

LISTING 1: baseball.py

81

Move to the right button and repeat
the test for the outs. At the third out,
the out LEDs will blink to say “It is the
other team’s turn to bat.” Press the

blink after the third strike to say strike
out. Push the middle button again to
clear the strikeout. This will also add
one out to the out LEDs.

Some additional commentary on baseball.py will be use-
ful for those who wish to study the code. Following are
some notes on the GPIO functions used in this program
and on three Python features you might not have seen be-
fore: lists, the += operator, and try:.

GPIO.setmode(GPIO.BCM)

This line tells the GPIO software that this program will use
the pin numbers that match the labels on the cobbler.
These numbers are the same numbers used by the Broad-
com processor chip in the Pi.

GPIO.setwarnings(True)

This line tells the GPIO software to check the status of the
GPIO pins and print a warning about any pin that is not in
the default state – the state that power-on sets the pins.
The default state is: “pin is input, with none of its pull-up
or pull-down resistors active.”
The warning says that the last program to use the GPIO
pins did not reset them to default. Just press Ctrl+C to
reset the pins to default values and then re-run base‑
ball.py.

Choose which GPIO Pin?

These two sections name all the GPIO pins that the bread-
board is going to use. The pin numbers must match the
connections on the breadboard.

GPIO.setup

These lines tell the Pi to use each of the GPIO pins as ei-
ther an input or output. Here they also set input pull-up
resistors to active and set the output pins to zero volts.

GPIO.input(add_ball)

GPIO.input(<pin number>) reads the voltage on the named
pin. If the voltage is close to 3.3, GPIO.input() returns 1. If
the voltage is close to 0.0, GPIO.input() returns 0.

GPIO.output(led_ball1, 1)

GPIO.output(<pin number>, <value>) sets the voltage
on the named pin according to <value>. If <pin number>
is a list of pin numbers, set all pins in the list according
to <value>. If the <value> is 1, set the pin voltage to 3.3
volts. If the <value> is 0, set the pin voltage to 0.0 volts.

GPIO.cleanup()

This line tells the Pi to reset the GPIO pins that this pro-
gram used. The pins are reset to be input pins with no
pull‑up or pull‑down resistors.

Python Lists

Make lists …

In python, a list is just a list of things. You put variables
into the list by putting the variable names between square
brackets [] and separated by commas. Later in the pro-
gram, the list passes to GPIO.output(), which will set all
of the pins in the list to the same value.

blink_list = []

Scan on down the program to about line 125 and find this
line. This line clears the list and makes it empty. After
clearing, The list still exists – just has nothing in it.

if balls == 4: blink_list += pinlist_balls

A few lines further down, this line, and a couple more
lines like it, copy the contents of one list into another. In
this case, the program copies the list pinlist_balls into
blink_list. If the receiving list already has things in it,
the new things just go onto the end of the list. The things
in the sending list are not removed from that list. After the
copy, these things are on both lists.

The Python += Operator
baseball.py uses the += operator in two ways:

1. �to add 1 to a count
Example: balls += 1

2. �to copy all the items in one list into another list.
Example: blink_list += pinlist_strikes

Exceptions

try: except: finally:

These lines are a standard way to handle certain interrupts
(like you pressing Ctrl+C on the keyboard) or exceptions
(errors) that happen while the program is running. If the
program is running inside the try when the interrupt or
exception happens, Python stops running the code inside
the try and jumps to the code inside the except. When
the except (exception) code is finished, the try is also
complete.
When the try is complete, if it has a finally, any code in-
side its finally is run, whether or not there has been an
exception within the try. It is possible for the try to com-
plete with no exception by simply exiting the end of the
try code.
In baseball.py, the while True: loop is an infinite loop,
so the try will never complete without an exception.
When you press Ctrl+C on the keyboard, you provide the
exception that allows the program to clean up and exit.

Notes on baseball.py

82 Raspberry Pi Adventures

Electronics

add_out button again to clear all of
the LEDs for the other team’s turn at
bat.

Clearing either a walk (blinking ball
LEDs) or a strikeout (blinking strike
LEDs) will clear all ball and strike LEDs
to get ready for the next batter.

Congratulations on a successful bread-
board project. Play Ball! X

Info
[1]	� Raspberry Pi Official Website:

https://​www.​raspberrypi.​org/

[2]	� RS: http://​uk.​rs‑online.​com/​web/​
generalDisplay.​html?​id=raspberrypi

[3]	� Allied Electronics:
http://​www.​alliedelec.​com/

[4]	� Element14:
http://​www.​element14.​com/​
community/​community/​raspberry‑pi

[5]	� Adafruit: https://​www.​adafruit.​com/
[6]	� Jameco: http://​www.​jameco.​com/
[7]	� Digi-Key: http://​www.​digikey.​com/
[8]	� Mouser: http://​www.​mouser.​com/
[9]	� Code for this article:

ftp://​ftp.​linux‑magazine.​com/​pub/​
listings/​magazine/​RPi_Adventures

058 �# Activate the pull‑up resistors.
059 �# When the button is pressed, the input on the pin will be zero.
060 �# ‑‑‑
061 �GPIO.setup(add_ball , GPIO.IN, GPIO.PUD_UP)
062 �GPIO.setup(add_strike, GPIO.IN, GPIO.PUD_UP)
063 �GPIO.setup(add_out , GPIO.IN, GPIO.PUD_UP)
064 �
065 �button_pressed = 0
066 �
067 �# ‑‑‑
068 �# Tell GPIO about the output pins (Connected to LEDs)
069 �# Start with all LEDs off.
070 �# ‑‑‑
071 �GPIO.setup(led_ball1 , GPIO.OUT, initial=GPIO.LOW)
072 �GPIO.setup(led_ball2 , GPIO.OUT, initial=GPIO.LOW)
073 �GPIO.setup(led_ball3 , GPIO.OUT, initial=GPIO.LOW)
074 �GPIO.setup(led_strike1, GPIO.OUT, initial=GPIO.LOW)
075 �GPIO.setup(led_strike2, GPIO.OUT, initial=GPIO.LOW)
076 �GPIO.setup(led_out1 , GPIO.OUT, initial=GPIO.LOW)
077 �GPIO.setup(led_out2 , GPIO.OUT, initial=GPIO.LOW)
078 �
079 �
080 �# ‑‑‑
081 �# Clear counts of balls, strikes, outs for the first inning
082 �# ‑‑‑
083 �balls = 0
084 �strikes = 0
085 �outs = 0
086 �
087 �# ‑‑‑
088 �# On the screen, tell how to play
089 �# ‑‑‑
090 �print "How to play:"
091 �print "On the breadboard:"
092 �print " Press the left button when the umpire calls a 'ball'"
093 �print " Press the middle button when the umpire calls a 'strike'"
094 �print " Press the right button when a player makes an out"
095 �print " "
096 �print " 'ball' LEDs will blink when the batter walks"
097 print " 'strike' LEDs will blink when the batter strikes out"
098 �print " 'out' LEDs will blink when this side takes the field "
099 ��print " "

100 �print " To clear blinking 'ball' LEDs, press the 'ball' button"
101 �print " �To clear blinking 'strike' LEDs, press the 'strike' button"
102 �print " To clear blinking 'out' LEDs, press the 'out' button"
103 ��print " "
104 �print "On the keyboard: "
105 �print "To exit the program, Press ctrl‑c"
106 �
107 �
108 �# ‑‑‑
109 �# Clear the blink_list so that no LEDs blink yet
110 �#
111 �# 'try', 'except', 'finally' catches ctrl‑c from the keyboard
112 �# and stops the program.
113 �#
114 �# Loop while the ball game is being played
115 �# Read the input pins to see if any has been pressed
116 �#
117 �# If an input is pressed, add 1 to its counter
118 �# (balls, strikes, or outs)
119 �#
120 �# Turn‑on the number of LEDs for the proper number of
121 �# balls, strikes, outs or add LEDs to the blink_list
122 �#
123 �# If blink_list is not empty, blink the LEDs in the list
124 �# ‑‑‑
125 �blink_list = []
126 �
127 �try:
128 � while True:
129 � # ‑‑‑
130 � # Read the buttons
131 � #
132 � # If a button is pressed,
133 � # Wait 1/20th of a second to make sure it was pressed
134 � # If it is still pressed,
135 � # Then wait for it to be released,
136 � # and add 1 to the count
137 � # Else (it was not pressed for 1/20th of a second)
138 � # Then we want to ignore it.
139 � #
140 � # When a button is being pressed and is very near the bottom
141 � # it sometimes bounces against the bottom ‑‑ too fast for

LISTING 1: baseball.py (continued)

83

https://www.raspberrypi.org/
http://uk.rs-online.com/web/generalDisplay.html?id=raspberrypi
http://uk.rs-online.com/web/generalDisplay.html?id=raspberrypi
http://www.alliedelec.com/
http://www.element14.com/community/community/raspberry-pi
http://www.element14.com/community/community/raspberry-pi
https://www.adafruit.com/
http://www.jameco.com/
http://www.digikey.com/
http://www.mouser.com/
ftp://ftp.linux-magazine.com/pub/listings/magazine/RPi_Adventures
ftp://ftp.linux-magazine.com/pub/listings/magazine/RPi_Adventures

142 � # a human finger to feel‑‑ but the computer will notice.
143 � # If we do not "debounce" the button by waiting a short time,
144 � # we might add several counts during a single press instead
145 � # of adding only the single count that we expected.
146 � # ‑‑‑
147 � if GPIO.input(add_ball) == button_pressed:
148 � time.sleep(.05)
149 � if GPIO.input(add_ball) == button_pressed:
150 � while GPIO.input(add_ball) == button_pressed:
151 � time.sleep(.02)
152 � balls += 1
153 �
154 � if GPIO.input(add_strike) == button_pressed:
155 � time.sleep(.05)
156 � if GPIO.input(add_strike) == button_pressed:
157 � while GPIO.input(add_strike) == button_pressed:
158 � time.sleep(.02)
159 � strikes += 1
160 �
161 � if GPIO.input(add_out) == button_pressed:
162 � time.sleep(.05)
163 � if GPIO.input(add_out) == button_pressed:
164 � while GPIO.input(add_out) == button_pressed:
165 � time.sleep(.02)
166 � outs += 1
167 �
168 � # ‑‑‑
169 � # Turn the LEDs on or off to show the count
170 � # of balls, strikes, outs
171 � #
172 � # If (count is zero) turn off all these LEDs
173 � #
174 � # If (have an LED for this count) turn it on
175 � #
176 � # If (have reached max count)
177 � # Then add all these LEDs to the blink list
178 � #
179 � # If (LEDs are blinking and button was pressed)
180 � # Then clear the count to zero
181 � # (LEDs will turn off next time around the loop)
182 � #
183 � # Notes:
184 � # Clearing the ball count also clears the strike count.
185 � # Clearing the strike count also clears the ball count.
186 � # Clearing the strike count adds one to the out count.
187 � # Clearing the out count resets for a new inning
188 � # ‑‑‑
189 � if balls == 0: GPIO.output(pinlist_balls, 0)
190 � if balls == 1: GPIO.output(led_ball1, 1)
191 � if balls == 2: GPIO.output(led_ball2, 1)
192 � if balls == 3: GPIO.output(led_ball3, 1)
193 � if balls == 4: blink_list += pinlist_balls
194 � if balls == 5:
195 � balls = 0
196 � strikes = 0
197 �
198 � if strikes == 0: GPIO.output(pinlist_strikes, 0)

LISTING 1: baseball.py (continued)

84 Raspberry Pi Adventures

Electronics

199 � if strikes == 1: GPIO.output(led_strike1, 1)
200 � if strikes == 2: GPIO.output(led_strike2, 1)
201 � if strikes == 3: blink_list += pinlist_strikes
202 � if strikes == 4:
203 � balls = 0
204 � strikes = 0
205 � if outs < 3:
206 � outs += 1
207 �
208 �
209 � if outs == 0: GPIO.output(pinlist_outs, 0)
210 � if outs == 1: GPIO.output(led_out1, 1)
211 � if outs == 2: GPIO.output(led_out2, 1)
212 � if outs == 3: blink_list += pinlist_outs
213 � if outs == 4:
214 � # ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
215 � # Reset for a new inning
216 � # ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
217 � balls = 0
218 � strikes = 0
219 � outs = 0
220 �
221 � # ‑‑‑
222 � # Handle any blink requests
223 � #
224 � # If blink_list is not empty:
225 � # Turn off all LEDs in the blink_list
226 � # Wait 1/5 of a second
227 � # Turn on all LEDs in the blink_list
228 � # Clear the blink list to empty
229 � # Else
230 � # sleep to give the CPU some time to handle other programs
231 � # ‑‑‑
232 � if len(blink_list) > 0:
233 � GPIO.output(blink_list, 0)
234 � time.sleep(.2)
235 � GPIO.output(blink_list, 1)
236 � time.sleep(.2)
237 � blink_list = []
238 � else:
239 � time.sleep(.05)
240 �
241 �except KeyboardInterrupt:
242 � print "ctrl‑c pressed ‑‑ Cleaning‑up and exiting"
243 �
244 �finally:
245 � # ‑‑‑
246 � # When the above loop exits:
247 � # Reset the GPIO pins that this program used
248 � # Pins set to be inputs
249 � # with no active pull‑up, pull‑down resistors
250 � # ‑‑‑
251 � GPIO.cleanup()
252 �
253 � # ‑‑‑
254 � # Then fall out the end of the program to exit.
255 � # ‑‑‑

LISTING 1: baseball.py (continued)

85

Go,
 Cat,
 Go!

Drawing and Animating a Hungry Cat Racer

We show how to use Scratch’s
built-in graphics editor to

create animations for a
racing game.

By Michael Badger

Using Scratch’s built-in graphics edi-
tor is a perfect way to

introduce Scratch to novice program-
mers of any age. Experienced Scratchers
can create detailed animations that en-
hance any project. In the Hungry Cat
Racer game, I’ll show you how to draw
multiple backgrounds and edit sprite
costumes that will become the basis of
the game’s animated effects.

When I introduce Scratch to young
programmers, the built-in graphics edi-
tor is often a perfect place to start; stu-
dents can take an existing project and
immediately customize it without any
initial programming while still engaging
in something creative. When customiz-
ing projects, the students invariably start
drawing their own characters, and then,

of course, they want to program those
characters to do something.

The setup for this project will involve
the Paint Editor, and although I won’t go
over each option in a tool-by-tool review,
I will show you the possibilities. In other
words, a five-year-old can hack together
a ninja character (that might look like
blue spaghetti to you) or a more practiced
artist can draw polished images.

Game Play
The player (a.k.a. the Scratch Cat)
drives along a road and tries to eat as
many mice or other rewards as possible
while avoiding dogs and other obstacles.
The mice and dogs will appear in the
road at random locations. The player

86 87Raspberry Pi Adventures

Scratch Animation

can move left and right using the arrow
keys to avoid the dog and eat the mice.

Moving Backgrounds
For this game, I created an animated back-
ground that simulates driving along a
road. Figure 1 shows the background
layout complete with a blue sky, a two-
lane road, and a border. To draw this
background, click on the Stage icon that’s
listed below the stage and select the Back‑
grounds tab. Click the Edit button next to
the default white background. If you are
using this tutorial with Scratch 2.0 outside
of your Raspberry Pi, backgrounds have
been renamed “backdrops.”

If you mouse over the tool icons on
the left side of the Paint Editor, a tool tip
will display the name of the tool. As you
can see in Figure 1, the background re-
lies heavily on colorful rectangles. If you
make a mistake while editing, you can
use the Undo button or press Ctrl+Z to
undo your changes. If something irre-
versible happens, cancel the Paint Editor
and start again.

To aid in the drawing process and en-
sure the images are drawn big enough, I
recommend using the zoom controls to
zoom out as far as possible. Select the Fill
tool and then select black from the color
picker. Click on the stage, and the white
background will be filled with black.

To draw the sky, select the Rectangle
tool, make sure the solid square option
is selected, and then choose blue from
the color picker. On the stage, draw a
rectangle in the top area of the stage by
clicking and dragging the mouse. As you
draw, a blue rectangle will appear. Re-
lease the mouse button to create the
rectangle. Some trial and error may be
needed to get the rectangle in the right

spot and to take up the entire area at the
top of the image. You won’t be able to
drag the rectangle around the stage to
position it, so keep undoing and redraw-
ing until you get something you like.
Then, use a green rectangle to draw a
border on each side of the stage, using
Figure 1 as a visual reference.

Voilà, you have a road without a cen-
ter line. At this point, you could use the
rectangle tool to draw a vertical center
line in the middle of the road, but I
found it easier to draw a new image and
then import it into the background. This
will help ensure a uniform design across
all the backgrounds you will create. An
inconsistent design from one back-
ground to another will be easily noticed.

As you see in my example, I’ve added
some clouds to the sky, which you can
do, too. Use the Ellipse tool to draw over-
lapping white ellipses. Click OK to save
the background and exit Paint Editor.

Draw, Export, and
Import Sprites
To get the center line, click the Paint
new sprite icon directly beneath the
stage to open a blank Paint Editor can-
vas. Draw a vertical rectangle in the size
and color you want. I used red.

After you save the new sprite, right-
click on the sprite’s icon and choose ex‑
port this sprite. Save it to your filesys-
tem. Now edit the stage background
and, in the Paint Editor, click Import. Se-
lect the sprite you just saved.

When the Paint Editor imports the
sprite, you will see a hand icon to signify
that you can move the image around the
stage to position it as needed. After you
set the position of the imported sprite by
clicking somewhere on the canvas or
saving the image, you will not be able to
reposition the imported image.

Duplicating and Editing
Backgrounds
Assuming you have a background that you
like, I recommend making a backup copy.
From the Backgrounds tab, you can right-
click and export the image or you can drag
the background and drop it onto one of the
icons in the sprite list, which will add the
image as a costume for that sprite.

FIGURE 1: Hungry Cat game play. Use the cat
to eat the mice and avoid the dogs.

FIGURE 2: Thumbnail view
of stage

backgrounds showing how each
image is changed.

\|/..---
/|\o\|

/
. . --

-
/|

\

86 87Raspberry Pi Adventures

I’m detecting the side of the road to re-
strict the player’s movement and create
a more challenging game play. If you
were creating a platform game, however,
this script provides one way to detect a
wall. It prevents the sprite from passing
through the detected boundary by mov-
ing in the opposite direction when it de-
tects the wall or boundary.

The when I receive (game over)
script is running another animation using
a combination of a costume and the
change () effect by () blocks. In some
cases, the pixelate effect or the whirl effect
may adequately cover your needs. I felt a
compelling need to start with an exploding
sprite, which I created by editing a cos-
tume with the Select tool. By selecting
pieces of the costume and moving it out-
ward from the costume’s center, it creates
a rudimentary exploding effect. You could,
of course, draw several costumes to illus-
trate this. I chose to draw one explosion
costume and then use the change () ef-
fect by () blocks to further distort the
image when the dog “catches” the cat.

In Figure 1, you can see that the cat is
sitting in a car. This costume was created
by importing and positioning a car into
each of the costumes used to animate the
player sprite. Like most image editing
software, the Paint Editor has an option
to flip the image horizontally and verti-
cally to change the orientation of the cos-
tume. This also applies to an image that
you first import into the Paint Editor. So,
if you follow my lead and import a car
into the cat, you can change the orienta-
tion right away before you commit the
change because, as with the center line,
you will not be able to make position
changes after you save the change.

Using Size to Change
Perspectives on the Mouse
Figure 5 shows the scripts to animate
the mouse. Note that the sprite starts in
a random x position on the stage and at
the top of the road. It is not constrained
to the width of the road like the cat’s
movement is; I did restrict the place-
ment of the dog to the width of the road.
That’s a decision I made to make the
game more challenging.

The effect of the mouse as it moves
from the top of the stage to the bottom is
important here. After the sprite picks a

By the way, if you drag a sprite’s cos-
tume onto the stage icon, you’ll add a
background to the stage. I didn’t use this
method to import the road’s center line
because you cannot reposition the sprite
with drag and drop; therefore, the
method I showed you provides as much
flexibility as possible.

Now, I’ll get back to editing the back-
grounds. A good starting point for the
animation seems to be three back-
grounds. If you copy the existing back-
ground two times, you can start to edit
the road’s center line.

Edit the first background and use a
black rectangle to draw over the center
line, leaving a small portion visible at the
top of the road. Then repeat this process
for the other backgrounds, and for each
background, move the position of the
center line down the image. Figure 2
shows the thumbnail view of my back-
grounds for a reference. Note that Figure
2 also shows my starting image with a
solid red line; it’s there only as a refer-
ence to show the progression of the edits.

Figure 3 shows the actual stage script
to animate the images to give the effect
of driving down the road. It continually
loops through costumes using the next
costume block. Clicking the green flag
will quickly cycle through each back-
ground in the order they are listed.

If you want to slow down the anima-
tion, add a wait () to the forever loop
in Figure 3.

Creating and Animating
the Player
Figure 4 shows the scripts to control the
player. The smaller stack of blocks are
initialization values to ensure the game
always starts with the sprite in the right
location, direction, size, and so forth.

The other when green flag
clicked script shows the movement
controls. Using the arrow keys is a
fairly common way to move a sprite in
Scratch, but this script actually detects
the side of the road and inverts the
sprite’s movement when the player
tries to go off the road. This prevents
the cat from straying off the road. And,
as you see in the script, I’m using a cos-
tume to show an animation when the
cat touches the green border. I’ll leave
it to you to create that effect.

FIGURE 3: A stage script to
initialize some

game variables and to animate
the backgrounds.

\|
/

. . --
-

/|
\

o

\|/ ..-
-- /|\

88 89Raspberry Pi Adventures

Scratch Animation

location to show itself, the size is re-
duced using the set size to () block.
As the mouse falls, the turn () de-
grees block rotates the sprite while in-
creasing the size of the mouse with the
change size by () block.

The set size by () changes the size
relative to the current size. For example,
in relation to the sprite’s starting size, a
0.5% value, would make the sprite half
the size, whereas using 200% would
make it twice as big. Subsequently set-
ting the size to the same percentage will
not change the size of the sprite, be-
cause 200% of the original sprite size is
always the same.

The change size by () block in com-
parison grows the sprite by the specified
amount based on the current size, so that
each time you run the change size by ()
block, it will grow or shrink the sprite by
the size specified. This allows the mouse
to get bigger each time the block runs.

The result of the animation is that the
mouse starts small at the top of the
screen (beginning of the road), and as the
mouse tumbles closer to the cat, it gets
bigger – to mimic real-life perspective.

Ending the Game
The game ends when the dog eats the
cat or, in this context, when the dog and
the cat touch. I won’t show the scripts
for the dog, because positioning and
moving the dog along the road can be
very similar to the cat’s movement al-
ready discussed. You can find the scripts
if you download the project [1].

Customizing Game Play
As the game stands, there is one reward
and one obstacle. One way to create chal-
lenging game play is to add more rewards
and obstacles. In Scratch 1.4, the way to
do that is to duplicate the sprites, which
will duplicate the scripts for each sprite,
too. Thus, it makes sense to create, play,
troubleshoot, and update your scripts be-
fore you duplicate them.

I drew inspiration from a Scratch 2.0
project that handles the generation of the
sprites using a clone feature, which is not
available in Scratch 1.4. If you have ac-
cess to a non-Pi computer using Flash,
you can check out the project online [2].

Speeding up the rate of the rewards
and obstacles based on either time or
score will also create a more challenging
environment. If the animations are run-
ning more slowly than you might like on
the Raspberry Pi, you can try increasing
the number of steps a sprite moves.

Of course, drawing the individual
frames of an animation opens the oppor-
tunity for an infinite amount of custom-
izations and personality. Happy
Scratchin’. X

Info
[1]	� Scratch 1.4 project: http://​www.​

scratchguide.​com/​tag/​
raspberry‑pi‑geek/

[2]	� Scratch 2.0 project: https://​scratch.​
mit.​edu/​
projects/​
26168007/

FIGURE 4: Scripts to control and animate the player. FIGURE 5: Scripts to display and move the mouse sprite.

\|
/

. . --
-

/|
\

o

\|/ ..-
-- /|\

\|/ ..-
-- /|\

o\|/
..---

/|\

88 89Raspberry Pi Adventures

http://www.scratchguide.com/tag/raspberry-pi-geek/
http://www.scratchguide.com/tag/raspberry-pi-geek/
http://www.scratchguide.com/tag/raspberry-pi-geek/
https://scratch.mit.edu/projects/26168007/
https://scratch.mit.edu/projects/26168007/
https://scratch.mit.edu/projects/26168007/
https://scratch.mit.edu/projects/26168007/

Sonic Pi [1] is a computer program-
ming environment for music

and sound composition, with features
that also let you use it as a realtime per-
formance instrument. The Sonic Pi proj-
ect was originally intended as a tool for
teaching music in schools. The beauty of
Sonic Pi is that you can learn about pro-
gramming and computer science while
also learning basic concepts of digital
sound and music production. Sonic Pi’s
live-coding capability can turn a pro-
grammer into a musical performer ex-
actly like a player in a band.

From 0 to Sound
in Three Steps
I’ll start by making some music with the
Raspberry Pi board and the Sonic Pi soft-
ware. First, you’ll need to do a system
check to be sure you have the required
pieces. (See the box titled “Parts List.”)

Before you can do anything with sound
on the Raspberry Pi, you’ll need to set the
output volume level. In the Raspbian
Main window, click on the Menu button
and select Preferences | Audio Device Set‑
tings. The Raspberry Pi is a playback-
only device, so there’s only a single out-
put volume control (Figure 1). For your
first session, set the volume level to 60.
Be careful with your first settings; you
don’t want to blow out your speakers or

Music
Box

Making Music with Sonic Pi

Make music and explore
the world of digital

sound with Sonic Pi.
 By Dave Phillips

FIGURE 1: Volume control for a Raspberry
Pi system running Raspbian. Le

ad
 Im

ag
e

©
A

le
xa

nd
r

A
le

ab
ie

v,
 1

23
R

F.
co

m

90 Raspberry Pi Adventures

Sonic Pi

your eardrums. You can always raise the
level later. If the volume control doesn’t
appear in the AudioDeviceSettings dialog,
click the Select Controls button (Figure 1)
and check the box for PCM.

Take a breath, you’re ready to dive.
The next steps provide a first demonstra-
tion of what you can do with Raspberry
Pi and Sonic Pi.

To start Sonic Pi, click the top Menu
button and choose Programming | Sonic
Pi. The Help panel at the bottom-left cor-
ner of the Sonic Pi window includes a
subpanel with three tabs. Click on the
Examples tab, scroll to the item labeled
[Magician] Compus Beats, then double-
click it to load it into the code viewer
(the other subpanel in the Help section).
At this point, your display should look
like Figure 2.

Now you need to copy the code from
the viewer into a workspace. Select the
text of the code by clicking and dragging
the mouse from the first line through the
last (Figure 3). Move the mouse pointer
to an empty workspace, then middle-

• A Raspberry Pi board

• �Peripherals: power supply, monitor,
keyboard, mouse

• Internet connection (WiFi or wired)

• �A sound system (headphones, pow-
ered speakers, HDMI audio/​video)

• �The Sonic Pi software (which comes
preinstalled on most Raspbian systems)

Parts List

FIGURE 2: Copying an example into the code viewer.

FIGURE 3: Selecting text in the code viewer.

91

sound. While the music is playing,
change the 4 to 8. Click on Run again,
listen for the audible difference, then
change it to 2 and click Run. Don’t click
the Stop button; the process will update
smoothly to the new code. Congratula-
tions, you’ve just completed your first
live coding session.

Now play with other values in the
code, always with the same procedure:
Edit, run, listen, repeat. Don’t worry too
much at first about what’s what; just
make some changes and listen for their
effect on the music. You might not like
all your changes, but your mistakes are
an important part of your development
as a live-coding player. Some changes
will have a dramatic effect; others might
be barely noticeable. As with most other
arts, you’ll learn the most by doing and
through trial and error. Eventually, you’ll
become more comfortable with the in-
strument and its possibilities. As with
any other instrument, your Sonic Pi skill
improves with time and practice. See the
box titled “Documentation” for tips on
where to get additional information on
the Raspberry Pi environment.

Making Your Own Music
Let’s make a song. I’m not going to
worry about whether it’s a good or bad
song; I just want to show how to make a
simple song with Sonic Pi. Don’t worry
if you don’t know much – or anything –
about music composition, you can learn
as you go with Sonic Pi’s help.

First, you need to understand the dif-
ference between synthesized sounds and

click on an empty line to insert the code
into the workspace. What, there’s no
empty line? Position the cursor at the
end of the welcome line, then either use
backspace to remove the existing text, or
press Enter to create a new line for the
new code.

With the code in the workspace, your
screen should look like Figure 4. Click
on the Run control, and if all the pieces
fit together, you’ll hear a rather nice
groove tune, complete with bass line,
synthesizer loops, and drum parts. Click
on the Stop control when you’ve heard
enough, but leave the code in the work-
space: you’ll need it again.

Take a moment to consider what you
just did:
1. �You set up a computer system for

making sound and music.
2. �You loaded and edited computer code

in Sonic Pi.
3. �You compiled (ran) that code, con-

verting it from a text file to an audio
stream, which is pretty cool.
Now you can try something more ex-

citing than just running a code block
and sitting back to listen. It is time to get
interactive and do a little live coding.

Return to the workspace with the code
from the previous demonstration. Click
on Run, and let the music begin. In the
workspace, scroll to the line that reads

sleep sd / 4

This code effectively creates the rhythm
of the piece by dividing the sample du-
ration by 4, then waiting for that value
before the next event is allowed to

FIGURE 4: Code in the workspace – ready to run.

92 Raspberry Pi Adventures

Sonic Pi

sample, with a half-second delay (sleep)
between beats.

Now add a snare drum:

 define :snare do
 sample :drum_snare_soft
 sleep 1
 end

If you run your workspace code now,
you’ll hear the bass drum first, then the
snare. That isn’t what you want, but
don’t bother about it now. The piece
isn’t finished yet.

Complete the drum set with a cymbal
sample:

 define :cymbal do
 sample :drum_cymbal_soft
 sleep 8
 end

The sleep value is longer because you
only want the cymbal at a certain point
in the progression of the piece.

Now that you’ve made a drum set
from sampled sounds, the next step is to
make a pattern for a synthesizer part.
Copy this code into your workspace:

 define :sinesynth do
 use_synth :sine
 notes = [:A2, :C3, :G2, :B2, U
 :F2, :A2, :E2, :Gs2]
 notes.each do |n|
 play note(n)
 play note(n)+12
 sleep 1
 end
 end

The note definition is a note name fol-
lowed by octave specifier. For instance,
the note Gs2 means a G-sharp played in
two octaves higher than Gs0 (octaves
range from 0 to 10 in Sonic Pi).

The |n| is shorthand for the notes list.
A note from the list passes to the play
command as the n value of the note.

sampled sounds. A synthesizer (short
form: synth) is an electronic sound-pro-
ducing device that sounds notes played
into it, just like a trumpet sounds the
notes played by the performer. A sample
is a recording of a sound already made.
Typically, samples aren’t very long, but
they can be any length. Some samples
are edited to function as audio loops, a
very useful feature, as you’re about to
find out.

You also need to understand a few
things about music composition. You
don’t have to worry about the rules and
regulations. You just need to know how
to create a musical form using those
synths and samples.

Many songwriters start with a rhythm
pattern. It doesn’t really matter how you
start, but I’ll take the well-known way
for now. I’ll begin by making a drum
part.

A drum set is a complex instrument. A
typical set will have a bass drum, a
snare drum, one or more mounted tom-
toms, a floor tom, a hi-hat, and one or
more cymbals. And, one person plays all
those pieces. That means that on a real
set, the player can play no more than
four of those pieces at once. Keep that in
mind if you want to make a realistic
drum part. Speaking of realism, you can
design drum set sounds with a synthe-
sizer, but since drum samples sound
more realistic, I’ll go with the sampled
sounds.

Start by defining the drum set. Copy
the following code into an empty work-
space:

load_samples [:drum_bass_soft, U
:drum_snare_soft, U
:drum_cymbal_soft]

That’s a bass drum, a snare drum, and a
cymbal. Now make a pattern for each
piece of the set, starting with the bass
drum:

 define :bassdrum do
 8.times do
 sample :drum_bass_soft
 sleep 0.5
 end
 end

Add this code to your workspace, then
click the Run control. You should hear
eight beats played by the soft bass drum

The Sonic Pi environment includes a great tutorial by Sam Aaron, Sonic
Pi’s chief designer, and of course, you’ll find Help examples for play and
study. The Sonic Pi website includes links to a variety of music and sound
examples. For more links, including audio and video examples, search for
“sonic pi” on Google, YouTube, Vimeo, and other sources.

Documentation

93

The extra play command doubles
the note at the octave; where the list
says A2, that line plays an A3. Doubling
at the octave makes the part sound more
full.

By the way, this code is an edited ver-
sion of a synth definition from one of
the Sonic Pi examples. I changed the
synth to the sine instrument, revised the
note list, and shortened the play block. I
encourage you to do the same with any
interesting or useful code you find. Bor-
rowing open source material and chang-
ing it for your own purposes is a time-
honored practice among programmers
and musicians.

At this point, the instruments are de-
fined, and they have patterns to play.
But if you run the code now, you’ll just
hear each instrument play in sequence,
not together. You need to arrange the
parts into a composition.

Fortunately Sonic Pi provides a neat
way of arranging the parts. This code
shows how to do it:

 in_thread(name: :bassdrum) do
 loop{bassdrum}
 end

 in_thread(name: :sinesynth) do
 sleep 4
 loop{sinesynth}
 end

 in_thread(name: :snare) do
 sleep 12.5
 loop{snare}
 end

 in_thread(name: :cymbal) do
 sleep 20
 loop{cymbal}
 end

That in_thread function is the orga-
nizer here, binding the separate parts
into a single piece. It starts the playback
with the bass drum, with no delay. In
these thread blocks, the sleep value
functions as a delay time for starting the
instrument and its pattern. So when you
run this code, you’ll hear the instru-
ments enter in the order seen above
(though, in fact, you can arrange the
in_thread blocks in any order).

One more addition to the code, and I’ll
call it complete. The synth pattern is
okay as it is, but I think it could be im-

proved a lot by adding some chords to it.
All you need to do is define a new in-
strument:

 define :sawsynth do
 use_synth :saw
 chords = [[:A :minor], :G, :F, :E]
 chords.each do |n|
 play_pattern_timed U
 chord(n), 0.25
 sleep 1.25
 end
 end

And put it in the thread:

 in_thread(name: :sawsynth) do
 sleep 20
 loop{sawsynth}
 end

The play_pattern_timed function
plays the chord notes in sequence in-
stead of all together, a process called ar-
peggiation.

The instrument is timed to come in
with the cymbal. Click on Run, and you
should hear a steady bass drum beat,
followed by a descending bass line, then
the snare drum, and finally the arpeg-
giated chords, announced by the cymbal
crash.

This little exercise produces a repeat-
ing pattern called a riff. A single riff
can be sufficient material for a song,
but typically more than one riff is used.
You could write another riff for a differ-
ent synth and drum set and then add it
to the existing workspace, arranging
the second riff to follow the first. I
leave that suggestion as a further exer-
cise in your studies. Meanwhile, you
can download and browse the com-
plete code [2].

Oh, and now that you’re a 21st-cen-
tury electronic music producer, you’ll
want to know how to save your work as
a WAV or MP3 in order to distribute it on
the Internet. Sites such as SoundCloud
[3] and Bandcamp [4] are great ways to
put your pieces out into the world and
get constructive feedback from other
producers. Once again, saving a WAV is
easy with Sonic Pi. Before you start play-
ing your piece, click on the Rec button.
Start the piece, stop it when you like,
then click Rec again to stop the record-
ing. You’ll be prompted for a place to
save your file. Sonic Pi won’t make an

94 Raspberry Pi Adventures

Sonic Pi

The “hands-on” philosophy is at the
core of Sonic Pi. The practice of live-
coding music composition is essentially
interactive, treating the computer as a
musical instrument played in realtime
by a performer (that is, you). Musicians
have been using the computer since its
earliest days, but modern hardware al-
lows a deeper level of interaction at the
code level. Live coding is a new perfor-
mance art, limited only by your hard-
ware capabilities and your imagination,
and Sonic Pi is an excellent introduction
to this new art. Most of the example pro-
grams are designed for interactive per-
formance, so you can jump in at any
time during a run.

Troubleshooting
If you have no sound with the examples,
you’ll need to do some problem-solving.
Make sure your speakers are turned on
and all physical connections are made
properly. Check the plugs and cables to
and from your speakers, and make sure
all connections are made properly.

MP3 directly, but you will find many
utilities online that will convert the file.
(Search for “WAV to MP3.”)

More Things to Try
After you get started making music, try
the following experiments:
•	Change the synths. Some will work

nicely, others will need more attention
to their parameter sets, and some
might not work well at all.

•	Switch the intensity of the drum set
components from soft to hard. Change
the components of the set completely.

•	Change the order and timing of the in-
strument entries into the performance
thread.

•	Change sleep values to add more vari-
ety to the rhythm.

•	Work on the mix – the overall balance
of the sounds. Add a reverb or other
effect to the code.

•	Use the code and your expansions on
it to explore its use in a live-coding
performance.

If you have the hardware resources, you
can even make your own samples. Re-
member, a sampled sound can be any-
thing, such as sounds made by kitchen
utensils or other common household ap-
pliances; it doesn’t have to be a “musi-
cal” sound. See the box titled “After the
First Steps” for more on building and en-
riching your Raspberry Pi music envi-
ronment.

Learning The Walk
After your first steps into Sonic Pi, you
might like to learn more about it and
how you can use it to make your own
sounds and music. If you’re completely
new to making music with a computer,
you can work through the tutorial exer-
cises. I began my exploration with the
tutorial, and it was a great starting point.
Of course, at any time you can run the
various examples. The tutorials progress
from simple pieces at the apprentice
stage to more complicated works at the
wizard level.

By the way, the tutorial covers a lot of
material dealing with the basics of com-
puter music and sound. You don’t need
to go through all of it right away, but as
you become more interested in making
your own pieces, you’ll want to check
out the whole tutorial.

As I mentioned earlier, the Raspberry Pi’s audio is limited to output only.
However, thanks to its USB ports, you can connect a high-quality digital
audio interface to the Raspberry Pi. Many interfaces require power from
the USB connection, so you might need to invest in a powered USB hub to
avoid taxing the board’s power distribution. You’ll also need equipment
typically found in recording studios, such as microphones and instru-
ments. By now, you’ve probably figured out that while your Raspberry Pi
is indeed a low-cost item, outfitting a recording studio around it can be-
come rather expensive.
Live coding can be a group activity, so form a band of players. You can as-
sign parts to each player in the same way any band is organized, with a
bass player, a synthesizer player, a drummer, and so on. Making music
with the computer by yourself can be a satisfactory activity. Making music
with a group of people playing computers can be awesome. You’ll also ex-
perience a new thing, a way of making music not possible until the devel-
opment of modern computers. Everyone knows the computer is central to
modern music production, but live-coding treats the machine as an instru-
ment in a new way, one played by a performer programming the computer
in realtime.
The Raspberry Pi can run the Guitarix [5] and Rakarrack [6] sound-pro-
cessing programs, making it an ideal low-cost, multi-effects unit for elec-
tric guitar players. The board can also run software synthesizers, such as
amSynth and ZynAddSubFX. A synth player can show up for a show fully
equipped with only a keyboard or controller interface, a Raspberry Pi run-
ning a softsynth, and the proper cables. By the way, for the best quality
sound from a Raspberry Pi-based synthesizer or effects processor, you
should use a USB audio interface.

After The First Steps

95

Check the Audio Ouput settings in the
Sonic Pi Prefs dialog, and make sure the
correct device is selected (headphone/​
speakers or HDMI). Set the volume con-
trol on your speakers to 50% or higher.
On the software side, set the output level
to 50%, and verify that no output con-
trol is muted.

The Raspberry Pi is powerful enough
for Sonic Pi, but it’s also easy enough for
a user to overwhelm the board’s play-
back capabilities. Be careful how many
audio streams run at one time, and
watch out for overlapping parts that can
distort and delay playback.

Into The Beyond
If Sonic Pi ever starts to feel limited, you
can look into running other environ-
ments for sound and music composition
on the Raspberry Pi. Highly evolved sys-
tems such as Csound [7], Pure Data (Pd)
[8], RtCmix [9], and SuperCollider [10]
have active development branches fo-
cused on the Raspberry Pi.

In particular, SuperCollider has been
the main influence on the development
of Sonic Pi, making it a good choice to
continue your studies. However, any one
of these systems is a good choice for
continuing your journey into the world
of computer music. All have graphic de-
velopment tools – in the case of Pure
Data, the entire system is graphic – and
all are very powerful.

As you progress with Sonic Pi, you’ll
want to pick up a few extra tools to
help you in your work. A sound editor
will be needed when you start making

your own samples and loops, preferably
an editor that includes tools for loop
definition and beat detection (to deter-
mine where the strong beats occur in a
soundfile).

The Audacity [11] program is a superb
cross-platform sound editor that is freely
available for Linux, Mac OS X, Win-
dows, and a version of Audacity will run
on the Raspberry Pi (Figure 5).

By today’s standards, the Raspberry Pi
is a relatively low-powered device, and
indeed; the central processor for my
Raspberry Pi B+ is less than 1Ghz in
speed. By comparison, my desktop
music workstation runs at 3.5 GHz with
six cores. But consider this comparison:
My first computer ran at 1/​100th the
speed of the Pi, at 10 times the cost, and
took up the available space of my desk.
Of course, the real capability of any
computer is measured by its usefulness.
For the purposes of this article, “useful-
ness” means its ability to run modern
software for sound and music, and in
that spirit, the Raspberry Pi has proven
that it is quite useful.

I have to mention again that the Rasp-
berry Pi’s fun factor is very high. When I
was 11 or so I got into amateur radio
(ham radio), which led me into building
my own gear, often with the famed
Heathkit packages. I had a lot of fun
with those kits, and I find myself getting
into the Raspberry Pi with the same
level of enjoyment. Which is to say, it’s
amazing great fun, and once you get
into what the Raspberry Pi can do, you’ll
have a great time figuring out what you
can do with it. X

Info
[1]	� Sonic Pi: http://​sonic‑pi.​net/
[2]	� Code for this article:

http://​linux‑sound.​org/​misc/​
first‑riff‑with‑sonicpi.​txt

[3]	� SoundCloud:
https://​soundcloud.​com/

[4]	� Bandcamp: https://​bandcamp.​com/
[5]	� Guitarix: http://​guitarix.​org/
[6]	� Rakarrack:

http://​rakarrack.​sourceforge.​net/
[7]	� Csound: http://​www.​csounds.​com/
[8]	� Pure Data (Pd): https://​puredata.​info/
[9]	� RtCmix: http://​rtcmix.​org/
[10]	� SuperCollider:

http://​supercollider.​github.​io/
[11]	� Audacity: http://​audacityteam.​org/

FIGURE 5: The Audacity soundfile editor.

96 Raspberry Pi Adventures

Sonic Pi

http://sonic-pi.net/
http://linux-sound.org/misc/first-riff-with-sonicpi.txt
http://linux-sound.org/misc/first-riff-with-sonicpi.txt
https://soundcloud.com/
https://bandcamp.com/
http://guitarix.org/
http://rakarrack.sourceforge.net/
http://www.csounds.com/
https://puredata.info/
http://rtcmix.org/
http://supercollider.github.io/
http://audacityteam.org/

All brand or product names are
trademarks of their respective
owners. Contact us if we haven’t
credited your copyright; we will
always correct any oversight.

Disclaimer

Raspberry Pi Geek is looking for fresh, original articles on
Raspberry Pi and other maker hardware platforms. If you
work with Raspberry Pi, Arduino, BeagleBone, Minnow-
Board, Parallella, or another similar technology, and you have
an interesting story about a recent project or configuration,
drop us a line at edit@raspberry-pi-geek.com.
We’re also seeking articles on software tools for maker hard-
ware environments – including applications in the reposito-
ries of the leading Raspberry Pi operating systems, as well as
homegrown scripts for custom configurations.
We’re especially interested in electronics projects that use
Raspberry Pi’s GPIO to control real-world hardware devices
for a practical (or whimsical) purpose. Write for Raspberry Pi
Geek and share your story.

Michael Badger	 52, 86

Paul Brown	 42

Joe Casad	 3, 8, 10, 18, 26

Heike Jurzik	 26

Dave Phillips	 90

Dmitri Popov	 34

Bill Sumner	 70

Scott Sumner	 58

Authors

Editor in Chief
	 Joe Casad, jcasad@linuxnewmedia.com

Managing Editor
	� Rita L Sooby, rsooby@linuxnewmedia.com

Copy Editor
	 Amber Ankerholz

Layout
	 Dena Friesen, Lori White

Cover Design
	� Dena Friesen and Lori White, Illustrations by

Young-Sun Teh, Alexandr Aleabiev, and xalanx
@ 123RF.com and Raspberry Pi

Advertising – North America
	 Ann Jesse, ajesse@linuxnewmedia.com
	 phone 	 +1 785 841 8834

Advertising – Europe
	 Brian Osborn, bosborn@linuxnewmedia.com
	 phone 	 +49 89 99 34 11 48

Publisher
	 Brian Osborn, bosborn@linuxnewmedia.com

Marketing Communications
	 Gwen Clark, gclark@linuxnewmedia.com

Customer Service / Subscription
	 For USA and Canada:
	 Email: cs@linuxnewmedia.com
	 Phone: 1-866-247-2802
	 (toll-free from the US and Canada)
	 Fax: 1-785-856-3084
	 For all other countries:
	 Email: subs@linuxnewmedia.com
	 Phone: +49 89 99 34 11 67
	 Fax: +49 89 99 34 11 98
	 Linux New Media USA
	 616 Kentucky St. Lawrence, KS 66044
	 www.linuxpromagazine.com

While every care has been taken in the content of
the magazine, the publishers cannot be held re-
sponsible for the accuracy of the information con-
tained within it or any consequences arising from
the use of it. The use of the DVD provided with the
magazine or any material provided on it is at your
own risk.

Copyright and Trademarks © 2016 Linux New
Media USA, LLC

No material may be reproduced in any form what-
soever in whole or in part without the written per-
mission of the publishers. It is assumed that all
correspondence sent, for example, letters, email,
faxes, photographs, articles, drawings, are
supplied for publication or license to third parties
on a non-exclusive worldwide basis by Linux New
Media unless otherwise stated in writing.

Linux Magazine Special (ISSN 1757-6369) is
published by Linux New Media USA, LLC, 616
Kentucky St, Lawrence, KS, 66044, USA.

All brand or product names are trademarks
of their respective owners. Contact us if we
haven’t credited your copyright; we will always
correct any oversight.

Printed in Germany

Distributed by COMAG Specialist, Tavistock Road,
West Drayton, Middlesex, UB7 7QE, United Kingdom

Published in Europe by: Sparkhaus Media GmbH,
Putzbrunner Str. 71, 81739 Munich, Germany

Contact Info

Wr ite for Us!
RASPBERRY PI ADVENTURES

Raspberry Pi Adventures98

	Raspberry Pi Adventures
	Welcome
	Contents
	On the DVD
	Assembling and Starting Your Raspberry Pi
	Exploring the Raspbian Operating System
	Apache, HTML, and More
	Exploring the Raspberry Pi Camera
	Programming Turtle Graphics with Turtle Art
	Getting Started with Scratch Programming
	Python Programming Basics
	Building an Electronics Project with the Breadboard and GPIO Pins
	Drawing and Animating a Hungry Cat Racer
	Making Music with Sonic Pi
	Masthead

